

Dept of CSE, NRCM Mr. K. Raju, Assistant Professor

A

Course File

On

“MC3003: ARTIFICIAL INTELLIGENCE”

Submitted by

Mr. K. Raju

Assistant Professor-CSE

NARSIMHA REDDY ENGINEERING COLLEGE (UGC-AUTONOMOUS)

(Affiliated to J.N.T.U, HYDERABAD)

MAISAMMGUDA (V), DHULAPALLY (P), MEDCHAL (M) SECUNDERABAD-500100

(2024-2025)

Dept of CSE, NRCM Mr. K. Raju, Assistant Professor

Program Name : B.Tech- All Branches

Name of the Course : ARTIFICIAL INTELLIGENCE

Course Code : MC3003

Year & Semester : III B.Tech- I SEM & II Sem

Faculty Name : Mr. K. Raju

S.NO CONTENTS Included

1 Vision, Mission Institute YES

2 Academic Calendar YES

3 Syllabus YES

4 Subjects Notes YES

5 Unit Wise Question Bank YES

6 Assignment YES

Recommendation/ Remarks :

 Signature of the Faculty Dean-Academics Principal

Dept of CSE, NRCM Mr. K. Raju, Assistant Professor

1. Institute State the Vision and Mission

Vision of the Institute

To produce competent professionals who can contribute to the industry, research and societal

benefits with environment consciousness and ethical Values.

Mission of the Institute

M1: Adapt continuous improvements in innovative teaching-learning practices and state-of-the- art

infrastructure to transform students as competent professionals and entrepreneurs in multi-

disciplinary fields.

M2: Develop an innovative ecosystem with strong involvement and participation of students and

faculty members.

M3: Impart National development spirit among the students to utilize their knowledge and skills for

societal benefits with ethical values.

Dept of CSE, NRCM Mr. K. Raju, Assistant Professor

2. Academic Calendar:

III Year B. Tech CSE ‐ I Sem L T/P/D C

 3 -/-/- 3

OBJECTIVES:

 To Learn the significance of intelligence systems.

 To understand the concepts of heuristic search techniques &logic programming.

 To know the various knowledge representation techniques.

UNIT - I

Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving

Agents Basic Search Strategies: Problem Spaces, Uninformed Search (Breadth-First, Depth-First

Search, Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing, Generic Best-First,

A*), Constraint Satisfaction (Backtracking, Local Search)

UNIT - II

Advanced Search: Constructing Search Trees, Stochastic Search, A* Search Implementation,

Minimax Search, Alpha-Beta Pruning Basic Knowledge Representation and Reasoning:

Propositional Logic, First-Order Logic, Forward Chaining and Backward Chaining, Introduction to

Probabilistic Reasoning, Bayes Theorem

UNIT – III

Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues,

Nonmonotonic Reasoning, Other Knowledge Representation Schemes Reasoning Under

Uncertainty: Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing Knowledge

in an Uncertain Domain, Bayesian Networks

UNIT - IV

Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem

Solving, Learning from Examples, Winston’s Learning Program, Decision Trees.

UNIT - V

Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge

Acquisition.

 TEXT BOOK:

NARSIMHA REDDY ENGINEERING COLLEGE - HYDERABAD

ARTIFICIAL INTELLIGENCE

1. Russell, S. and Norvig, P, Artificial Intelligence: A Modern Approach, Third Edition,

PrenticeHall, 2010.

REFERENCE BOOKS:

1. Artificial Intelligence, Elaine Rich, Kevin Knight, Shivasankar B. Nair, The McGraw Hill

publications, Third Edition, 2009.

2. George F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem

Solving, Pearson Education, 6th ed., 2009.

Course Outcomes:

 Ability to formulate an efficient problem space for a problem expressed in natural language.

 Select a search algorithm for a problem and estimate its time and space complexities.

 Possess the skill for representing knowledge using the appropriate technique for a given

problem.

 Possess the ability to apply AI techniques to solve problems of game playing

UNIT I:

Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving Agents Basic

Search Strategies: Problem Spaces, Uninformed Search (Breadth-First, Depth-First Search, Depth-first

with Iterative Deepening), Heuristic Search (Hill Climbing, Generic Best-First, A*), Constraint

Satisfaction (Backtracking, Local Search)

Introduction:

 Artificial Intelligence is concerned with the design of intelligence in an artificial device. The term

was coined by John McCarthy in 1956.

 Intelligence is the ability to acquire, understand and apply the knowledge to achieve goals in the

world.

 AI is the study of the mental faculties through the use of computational models

 AI is the study of intellectual/mental processes as computational processes.

 AI program will demonstrate a high level of intelligence to a degree that equals or exceeds the

intelligence required of a human in performing some task.

 AI is unique, sharing borders with Mathematics, Computer Science, Philosophy,

Psychology, Biology, Cognitive Science and many others.

 Although there is no clear definition of AI or even Intelligence, it can be described as an attempt to

build machines that like humans can think and act, able to learn and use knowledge to solve

problems on their own.

History of AI:

Important research that laid the groundwork for AI:

 In 1931, Goedel layed the foundation of Theoretical Computer Science1920-30s:

He published the first universal formal language and showed that math itself is either

flawed or allows for unprovable but true statements.

 In 1936, Turing reformulated Goedel’s result and church’s extension thereof.

 In 1956, John McCarthy coined the term "Artificial Intelligence" as the topic of

the Dartmouth Conference, the first conference devoted to the subject.

http://www.idsia.ch/~juergen/goedel.html
http://www-formal.stanford.edu/jmc/history/dartmouth.html

 In 1957, The General Problem Solver (GPS) demonstrated by Newell, Shaw & Simon

 In 1958, John McCarthy (MIT) invented the Lisp language.

 In 1959, Arthur Samuel (IBM) wrote the first game-playing program, for checkers, to

achieve sufficient skill to challenge a world champion.

 In 1963, Ivan Sutherland's MIT dissertation on Sketchpad introduced the idea of interactive

graphics into computing.

 In 1966, Ross Quillian (PhD dissertation, Carnegie Inst. of Technology; now CMU)

demonstrated semantic nets

 In 1967, Dendral program (Edward Feigenbaum, Joshua Lederberg, Bruce Buchanan,

Georgia Sutherland at Stanford) demonstrated to interpret mass spectra on organic

chemical compounds. First successful knowledge-based program for scientific reasoning.

 In 1967, Doug Engelbart invented the mouse at SRI

 In 1968, Marvin Minsky & Seymour Papert publish Perceptrons, demonstrating limits of

simple neural nets.

 In 1972, Prolog developed by Alain Colmerauer.

 In Mid 80’s, Neural Networks become widely used with the Backpropagation algorithm

(first described by Werbos in 1974).

 1990, Major advances in all areas of AI, with significant demonstrations in machine

learning, intelligent tutoring, case-based reasoning, multi-agent planning, scheduling,

uncertain reasoning, data mining, natural language understanding and translation, vision,

virtual reality, games, and other topics.

 In 1997, Deep Blue beats the World Chess Champion Kasparov

 In 2002, iRobot, founded by researchers at the MIT Artificial Intelligence Lab,

introduced Roomba, a vacuum cleaning robot. By 2006, two million had been sold.

Application of AI:

AI algorithms have attracted close attention of researchers and have also been applied successfully

to solve problems in engineering. Nevertheless, for large and complex problems, AI algorithms

consume considerable computation time due to stochastic feature of the search approaches

1) Business; financial strategies

http://aitopics.org/publication/gps-program-simulates-human-thought
http://aitopics.org/publication/heuristic-dendral-program-generating-explanatory-hypotheses-organic-chemistry
http://www.irobot.com/

2) Engineering: check design, offer suggestions to create new product, expert systems for

all engineering problems

3) Manufacturing: assembly, inspection and maintenance

4) Medicine: monitoring, diagnosing

5) Education: in teaching

6) Fraud detection

7) Object identification

8) Information retrieval

9) Space shuttle scheduling

Building AI Systems:

1) Perception

Intelligent biological systems are physically embodied in the world and experience the world

through their sensors (senses). For an autonomous vehicle, input might be images from a camera

and range information from a rangefinder. For a medical diagnosis system, perception is the set of

symptoms and test results that have been obtained and input to the system manually.

2) Reasoning

Inference, decision-making, classification from what is sensed and what the internal "model" is of

the world. Might be a neural network, logical deduction system, Hidden Markov Model induction,

heuristic searching a problem space, Bayes Network inference, genetic algorithms, etc.

Includes areas of knowledge representation, problem solving, decision theory, planning, game

theory, machine learning, uncertainty reasoning, etc.

3) Action

Biological systems interact within their environment by actuation, speech, etc. All behavior is

centered around actions in the world. Examples include controlling the steering of a Mars rover or

autonomous vehicle, or suggesting tests and making diagnoses for a medical diagnosis system.

Includes areas of robot actuation, natural language generation, and speech synthesis.

The definitions of AI:

a) "The exciting new effort to make

computers think . . . machines with minds,

in the full and literal sense" (Haugeland,

1985)

"The automation of] activities that we

associate with human thinking, activities

such as decision-making, problem solving,

learning..."(Bellman, 1978)

b) "The study of mental faculties through

the use of computational models"

(Charniak and McDermott, 1985)

"The study of the computations that

make it possible to perceive, reason,

and act" (Winston, 1992)

c) "The art of creating machines that perform

functions that require intelligence when

performed by people" (Kurzweil, 1990)

"The study of how to make computers do

 things at which, at the moment, people

 are better" (Rich and Knight, 1 99 1)

d) "A field of study that seeks to explain

and emulate intelligent behavior in

terms of computational processes"

(Schalkoff, 1 990)

"The branch of computer science that

is concerned with the automation of

intelligent behavior" (Luger and

Stubblefield, 1993)

The definitions on the top, (a) and (b) are concerned with reasoning, whereas those on the bottom, (c)

and (d) address behavior.The definitions on the left, (a) and (c) measure success in terms of human

performance, and those on the right, (b) and (d) measure the ideal concept of intelligence called

rationality

Intelligent Systems:

In order to design intelligent systems, it is important to categorize them into four categories (Luger and

Stubberfield 1993), (Russell and Norvig, 2003)

1. Systems that think like humans

2. Systems that think rationally

3. Systems that behave like humans

4. Systems that behave rationally

 Human- Like Rationally

Think:

 Cognitive Science Approach

 “Machines that think like humans”

 Laws of thought Approach

 “ Machines that think Rationally”

Act:

 Turing Test Approach

 “Machines that behave like humans”

 Rational Agent Approach

 “Machines that behave Rationally”

Scientific Goal: To determine which ideas about knowledge representation, learning, rule systems search,

and so on, explain various sorts of real intelligence.

Engineering Goal: To solve real world problems using AI techniques such as Knowledge representation,

learning, rule systems, search, and so on.

Traditionally, computer scientists and engineers have been more interested in the engineering goal,

while psychologists, philosophers and cognitive scientists have been more interested in the scientific goal.

Cognitive Science: Think Human-Like

a. Requires a model for human cognition. Precise enough models allow simulation by

computers.

b. Focus is not just on behavior and I/O, but looks like reasoning process.

c. Goal is not just to produce human-like behavior but to produce a sequence of steps of the

reasoning process, similar to the steps followed by a human in solving the same task.

Laws of thought: Think Rationally

a. The study of mental faculties through the use of computational models; that it is, the study of

computations that make it possible to perceive reason and act.

b. Focus is on inference mechanisms that are probably correct and guarantee an optimal solution.

c. Goal is to formalize the reasoning process as a system of logical rules and procedures of inference.

d. Develop systems of representation to allow inferences to be like

“Socrates is a man. All men are mortal. Therefore Socrates is mortal”

Turing Test: Act Human-Like

a. The art of creating machines that perform functions requiring intelligence when performed by

people; that it is the study of, how to make computers do things which, at the moment, people do

better.

b. Focus is on action, and not intelligent behavior centered around the representation of the world

c. Example: Turing Test

o 3 rooms contain: a person, a computer and an interrogator.

o The interrogator can communicate with the other 2 by teletype (to avoid the

machine imitate the appearance of voice of the person)

o The interrogator tries to determine which the person is and which the machine is.

o The machine tries to fool the interrogator to believe that it is the human, and the

person also tries to convince the interrogator that it is the human.

o If the machine succeeds in fooling the interrogator, then conclude that the machine

is intelligent.

Rational agent: Act Rationally

a. Tries to explain and emulate intelligent behavior in terms of computational process; that it is

concerned with the automation of the intelligence.

b. Focus is on systems that act sufficiently if not optimally in all situations.

c. Goal is to develop systems that are rational and sufficient

The difference between strong AI and weak AI:

Strong AI makes the bold claim that computers can be made to think on a level (at least) equal to humans.

Weak AI simply states that some "thinking-like" features can be added to computers to make them more

useful tools... and this has already started to happen (witness expert systems, drive-by-wire cars and

speech recognition software).

AI Problems:

 AI problems (speech recognition, NLP, vision, automatic programming, knowledge

representation, etc.) can be paired with techniques (NN, search, Bayesian nets, production systems,

etc.).AI problems can be classified in two types:

1. Common-place tasks(Mundane Tasks)

2. Expert tasks

Common-Place Tasks:

1. Recognizing people, objects.

2. Communicating (through natural language).

3. Navigating around obstacles on the streets.

These tasks are done matter of factly and routinely by people and some other animals.

Expert tasks:

1. Medical diagnosis.

2. Mathematical problem solving

3. Playing games like chess

These tasks cannot be done by all people, and can only be performed by skilled specialists.

 Clearly tasks of the first type are easy for humans to perform, and almost all are able to master

them. The second range of tasks requires skill development and/or intelligence and only some specialists

can perform them well. However, when we look at what computer systems have been able to achieve to

date, we see that their achievements include performing sophisticated tasks like medical diagnosis,

performing symbolic integration, proving theorems and playing chess.

1. Intelligent Agent’s:

2.1 Agents and environments:

Fig 2.1: Agents and Environments

2.1.1 Agent:

An Agent is anything that can be viewed as perceiving its environment through sensors and acting

upon that environment through actuators.

 A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and other

body parts for actuators.

 A robotic agent might have cameras and infrared range finders for sensors and various motors

for actuators.

 A software agent receives keystrokes, file contents, and network packets as sensory inputs and

acts on the environment by displaying on the screen, writing files, and sending network

packets.

2.1.2 Percept:

We use the term percept to refer to the agent's perceptual inputs at any given instant.

2.1.3 Percept Sequence:

An agent's percept sequence is the complete history of everything the agent has ever perceived.

2.1.4 Agent function:

Mathematically speaking, we say that an agent's behavior is described by the agent function that maps

any given percept sequence to an action.

2.1.5 Agent program

Internally, the agent function for an artificial agent will be implemented by an agent program. It is

important to keep these two ideas distinct. The agent function is an abstract mathematical description;

the agent program is a concrete implementation, running on the agent architecture.

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world shown in Fig

2.1.5. This particular world has just two locations: squares A and B. The vacuum agent perceives

which square it is in and whether there is dirt in the square. It can choose to move left, move right,

suck up the dirt, or do nothing. One very simple agent function is the following: if the current square

is dirty, then suck, otherwise move to the other square. A partial tabulation of this agent function is

shown in Fig 2.1.6.

Fig 2.1.5: A vacuum-cleaner world with just two locations.

2.1.6 Agent function

Percept Sequence Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean], [A, Clean] Right

[A, Clean], [A, Dirty] Suck

…

Fig 2.1.6: Partial tabulation of a simple agent function for the example: vacuum-cleaner world shown

in the Fig 2.1.5

Fig 2.1.6(i): The REFLEX-VACCUM-AGENT program is invoked for each new percept (location, status)

and returns an action each time

Strategies of Solving Tic-Tac-Toe Game Playing

Tic-Tac-Toe Game Playing:

Tic-Tac-Toe is a simple and yet an interesting board game. Researchers have used various approaches to

study the Tic-Tac-Toe game. For example, Fok and Ong and Grim et al. have used artificial neural

network based strategies to play it. Citrenbaum and Yakowitz discuss games like Go-Moku, Hex and

Bridg-It which share some similarities with Tic-Tac-Toe.

Function REFLEX-VACCUM-AGENT ([location, status]) returns an action If

status=Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

111

.

 Fig 1.

A Formal Definition of the Game:

The board used to play the Tic-Tac-Toe game consists of 9 cells laid out in the form of a 3x3 matrix (Fig. 1).

 The game is played by 2 players and either of them can start. Each of the two players is assigned a unique

symbol (generally 0 and X). Each player alternately gets a turn to make a move. Making a move is compulsory

and cannot be deferred. In each move a player places the symbol assigned to him/her in a hitherto blank cell.

Let a track be defined as any row, column or diagonal on the board. Since the board is a

square matrix with 9 cells, all rows, columns and diagonals have exactly 3 cells. It can be easily

observed that there are 3 rows, 3 columns and 2 diagonals, and hence a total of 8 tracks on the board (Fig. 1). The

goal of the game is to fill all the three cells of any track on the board with the symbol assigned to one before the

opponent does the same with the symbol assigned to him/her. At any point of the game, if there exists a

track whose all three cells have been marked by the same symbol, then the player to whom that symbol

have been assigned wins and the game terminates.

 If there exist no track whose cells have been marked by the same symbol when there is no more blank cell on the

board then the game is drawn.

Let the priority of a cell be defined as the number of tracks passing through it. The priorities of the nine cells on

the board according to this definition are tabulated in Table 1. Alternatively, let the priority of a track be

defined as the sum of the priorities of its three cells. The priorities of the eight tracks on the board according to this

definition are tabulated in Table 2. The prioritization of the cells and the tracks lays the foundation of the

heuristics to be used in this study. These heuristics are somewhat similar to those proposed by Rich and Knight.

Strategy 1:

Algorithm:

112

1. View the vector as a ternary number. Convert it to a decimal number.

2. Use the computed number as an index into Move-Table and access the vector stored there.

3. Set the new board to that vector.

Procedure:

1) Elements of vector:

 0: Empty

1: X

2: O

→ the vector is a ternary number

2) Store inside the program a move-table (lookuptable):

a) Elements in the table: 19683 (39)

b) Element = A vector which describes the most suitable move from the

Comments:

1. A lot of space to store the Move-Table.

2. A lot of work to specify all the entries in the Move-Table.

3. Difficult to extend

Explanation of Strategy 2 of solving Tic-tac-toe problem

Stratergy 2:

Data Structure:

1) Use vector, called board, as Solution 1

2) However, elements of the vector:

113

 2: Empty

 3: X

 5: O

3) Turn of move: indexed by integer

 1,2,3, etc

Function Library:

1. Make2:

a) Return a location on a game-board.

IF (board[5] = 2)

RETURN 5; //the center cell.

ELSE

RETURN any cell that is not at the board’s corner;

// (cell: 2,4,6,8)

b) Let P represent for X or O

c) can_win(P) :

P has filled already at least two cells on a straight line (horizontal, vertical, or diagonal)

d) cannot_win(P) = NOT(can_win(P))

2. Posswin(P):

IF (cannot_win(P))

RETURN 0;

ELSE

RETURN index to the empty cell on the line of

can_win(P)

Let odd numbers are turns of X

 Let even numbers are turns of O

3. Go(n): make a move

Algorithm:

1. Turn = 1: (X moves)

Go(1) //make a move at the left-top cell

2. Turn = 2: (O moves)

114

IF board[5] is empty THEN

Go(5)

ELSE

Go(1)

3. Turn = 3: (X moves)

IF board[9] is empty THEN

Go(9)

ELSE

Go(3).

4. Turn = 4: (O moves)

IF Posswin (X) <> 0 THEN

Go (Posswin (X))

//Prevent the opponent to win

ELSE Go (Make2)

5. Turn = 5: (X moves)

IF Posswin(X) <> 0 THEN

Go(Posswin(X))

//Win for X.

ELSE IF Posswin(O) <> THEN

Go(Posswin(O))

//Prevent the opponent to win

ELSE IF board[7] is empty THEN

Go(7)

ELSE Go(3).

 Comments:

1. Not efficient in time, as it has to check several conditions before making each move.

2. Easier to understand the program’s strategy.

3. Hard to generalize.

Introduction to Problem Solving, General problem solving

115

Problem solving is a process of generating solutions from observed data.

−a problem is characterized by a set of goals,

−a set of objects, and

−a set of operations.

These could be ill-defined and may evolve during problem solving.

Searching Solutions:

To build a system to solve a problem:

1. Define the problem precisely

2. Analyze the problem

3. Isolate and represent the task knowledge that is necessary to solve the problem

4. Choose the best problem-solving techniques and apply it to the particular problem.

Defining the problem as State Space Search:

The state space representation forms the basis of most of the AI methods.

 Formulate a problem as a state space search by showing the legal problem states, the legal operators, and

the initial and goal states.

 A state is defined by the specification of the values of all attributes of interest in the world

 An operator changes one state into the other; it has a precondition which is the value of certain attributes

prior to the application of the operator, and a set of effects, which are the attributes altered by the operator

 The initial state is where you start

 The goal state is the partial description of the solution

Formal Description of the problem:

1. Define a state space that contains all the possible configurations of the relevant objects.

2. Specify one or more states within that space that describe possible situations from which the problem

solving process may start (initial state)

3. Specify one or more states that would be acceptable as solutions to the problem. (goal states)

Specify a set of rules that describe the actions (operations) available

State-Space Problem Formulation:

Example: A problem is defined by four items:

116

1. initial state e.g., "at Arad“

2. actions or successor function : S(x) = set of action–state pairs

 e.g., S(Arad) = {<Arad Zerind, Zerind>, … }

3. goal test (or set of goal states)

e.g., x = "at Bucharest”, Checkmate(x)

4. path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x,a,y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state

Example: 8-queens problem

1. Initial State: Any arrangement of 0 to 8 queens on board.

2. Operators: add a queen to any square.

3. Goal Test: 8 queens on board, none attacked.

4. Path cost: not applicable or Zero (because only the final state counts, search cost might be of

interest).

State Spaces versus Search Trees:

 State Space

117

o Set of valid states for a problem

o Linked by operators

o e.g., 20 valid states (cities) in the Romanian travel problem

 Search Tree

– Root node = initial state

– Child nodes = states that can be visited from parent

– Note that the depth of the tree can be infinite

• E.g., via repeated states

– Partial search tree

• Portion of tree that has been expanded so far

– Fringe

• Leaves of partial search tree, candidates for expansion

 Search trees = data structure to search state-space

Properties of Search Algorithms

Which search algorithm one should use will generally depend on the problem domain.

There are four important factors to consider:

1. Completeness – Is a solution guaranteed to be found if at least one solution exists?

2. Optimality – Is the solution found guaranteed to be the best (or lowest cost) solution if there exists more than

one solution?

3. Time Complexity – The upper bound on the time required to find a solution, as a function of the complexity of

the problem.

4. Space Complexity – The upper bound on the storage space (memory) required at any point during the search, as

a function of the complexity of the problem.

General problem solving, Water-jug problem, 8-puzzle problem

General Problem Solver:

118

The General Problem Solver (GPS) was the first useful AI program, written by Simon, Shaw, and Newell in 1959.

As the name implies, it was intended to solve nearly any problem.

Newell and Simon defined each problem as a space. At one end of the space is the starting point; on the other side

is the goal. The problem-solving procedure itself is conceived as a set of operations to cross that space, to get from

the starting point to the goal state, one step at a time.

The General Problem Solver, the program tests various actions (which Newell and Simon called operators) to see

which will take it closer to the goal state. An operator is any activity that changes the state of the system. The

General Problem Solver always chooses the operation that appears to bring it closer to its goal.

Example: Water Jug Problem

Consider the following problem:

A Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one, a pump which

has unlimited water which you can use to fill the jug, and the ground on which water may be poured.

Neither jug has any measuring markings on it. How can you get exactly 2 gallons of water in the 4-

gallon jug?

State Representation and Initial State :

We will represent a state of the problem as a tuple (x, y) where x represents the amount of water in the 4-

gallon jug and y represents the amount of water in the 3-gallon jug. Note 0 ≤x≤ 4, and 0 ≤y ≤3. Our initial

state: (0, 0)

Goal Predicate - state = (2, y) where 0≤ y≤ 3.

Operators -we must defi ne a set of operators that will take us from one state to another:

1. Fill 4-gal jug (x,y) → (4,y)

 x < 4

2. Fill 3-gal jug (x,y) → (x,3)

 y < 3

3. Empty 4-gal jug on ground (x,y) → (0,y)

 x > 0

4. Empty 3-gal jug on ground (x,y) → (x,0)

119

 y > 0

5. Pour water from 3-gal jug (x,y) →! (4, y - (4 - x))

 to ll 4-gal jug 0 < x+y 4 and y > 0

6. Pour water from 4-gal jug (x,y) → (x - (3-y), 3)

 to ll 3-gal-jug 0 < x+y 3 and x > 0

7. Pour all of water from 3-gal jug (x,y) → (x+y, 0)

 into 4-gal jug 0 < x+y 4 and y 0

8. Pour all of water from 4-gal jug (x,y) → (0, x+y)

 into 3-gal jug 0 < x+y 3 and x 0

Through Graph Search, the following solution is found :

Gals in 4-gal jug Gals in 3-gal jug Rule Applied

0 0

 1. Fill 4

4 0

 6. Pour 4 into 3 to ll

1 3

 4. Empty 3

1 0

 8. Pour all of 4 into 3

0 1

 1. Fill 4

4 1

 6. Pour into 3

2 3

Second Solution:

120

Systematic Control Strategies (Blind searches):

Breadth First Search:

Let us discuss these strategies using water jug problem. These may be applied to any search problem.

Construct a tree with the initial state as its root.

Generate all the offspring of the root by applying each of the applicable rules to the initial state.

Now for each leaf node, generate all its successors by applying all the rules that are appropriate.

8 Puzzle Problem.

The 8 puzzle consists of eight numbered, movable tiles set in a 3x3 frame. One cell of the frame is always empty

thus making it possible to move an adjacent numbered tile into the empty cell. Such a puzzle is illustrated in

following diagram.

http://1.bp.blogspot.com/_ZGzaqHb40vU/TEVoMGIR-xI/AAAAAAAAAFA/5q6VMesb3XI/s1600/8-Puzzle.jpg

121

The program is to change the initial configuration into the goal configuration. A solution to the problem is an

appropriate sequence of moves, such as “move tiles 5 to the right, move tile 7 to the left, move tile 6 to the down,

etc”.

Solution:

To solve a problem using a production system, we must specify the global database the rules, and the control

strategy. For the 8 puzzle problem that correspond to these three components. These elements are the problem

states, moves and goal. In this problem each tile configuration is a state. The set of all configuration in the space of

problem states or the problem space, there are only 3, 62,880 different configurations o the 8 tiles and blank space.

Once the problem states have been conceptually identified, we must construct a computer representation, or

description of them . this description is then used as the database of a production system. For the 8-puzzle, a

straight forward description is a 3X3 array of matrix of numbers. The initial global database is this description of

the initial problem state. Virtually any kind of data structure can be used to describe states.

A move transforms one problem state into another state. The 8-puzzle is conveniently interpreted as having the

following for moves. Move empty space (blank) to the left, move blank up, move blank to the right and move

blank down,. These moves are modeled by production rules that operate on the state descriptions in the appropriate

manner.

The rules each have preconditions that must be satisfied by a state description in order for them to be applicable to

that state description. Thus the precondition for the rule associated with “move blank up” is derived from the

requirement that the blank space must not already be in the top row.

The problem goal condition forms the basis for the termination condition of the production system. The control

strategy repeatedly applies rules to state descriptions until a description of a goal state is produced. It also keeps

track of rules that have been applied so that it can compose them into sequence representing the problem solution.

A solution to the 8-puzzle problem is given in the following figure.

Example:- Depth – First – Search traversal and Breadth - First - Search traversal

 for 8 – puzzle problem is shown in following diagrams.

122

 Exhaustive Searches, BFS and DFS

Search is the systematic examination of states to find path from the start/root state to the goal state.

Many traditional search algorithms are used in AI applications. For complex problems, the traditional algorithms

are unable to find the solution within some practical time and space limits. Consequently, many special techniques

are developed; using heuristic functions. The algorithms that use heuristic functions are called heuristic

http://1.bp.blogspot.com/_ZGzaqHb40vU/TEVpWMBxoLI/AAAAAAAAAFI/yVi4TcAA4b0/s1600/8-PuzzleDFS.jpg
http://4.bp.blogspot.com/_ZGzaqHb40vU/TEVqz1z5SAI/AAAAAAAAAFQ/kCIFU4cQuNY/s1600/8-PuzzleBFS.jpg

123

algorithms. Heuristic algorithms are not really intelligent; they appear to be intelligent because they achieve better

performance.

Heuristic algorithms aremore efficient because they take advantage of feedback from the data to direct the search

path.

Uninformed search

Also called blind, exhaustive or brute-force search, uses no information about the problem to guide the search and

therefore may not be very efficient.

Informed Search:

Also called heuristic or intelligent search, uses information about the problem to guide the search, usually guesses

the distance to a goal state and therefore efficient, but the search may not be always possible.

Uninformed Search Methods:

Breadth- First -Search:

Consider the state space of a problem that takes the form of a tree. Now, if we search the goal along each breadth

of the tree, starting from the root and continuing up to the largest depth, we call it breadth first search.

• Algorithm:

1. Create a variable called NODE-LIST and set it to initial state

2. Until a goal state is found or NODE-LIST is empty do

a. Remove the first element from NODE-LIST and call it E. If NODE-LIST was empty, quit

b. For each way that each rule can match the state described in E do:

i. Apply the rule to generate a new state

ii. If the new state is a goal state, quit and return this state

iii. Otherwise, add the new state to the end of NODE-LIST

BFS illustrated:

Step 1: Initially fringe contains only one node corresponding to the source state A.

124

Figure 1

FRINGE: A

Step 2: A is removed from fringe. The node is expanded, and its children B and C are generated. They are placed

at the back of fringe.

Figure 2

FRINGE: B C

Step 3: Node B is removed from fringe and is expanded. Its children D, E are generated and put at the back of

fringe.

Figure 3

FRINGE: C D E

Step 4: Node C is removed from fringe and is expanded. Its children D and G are added to the back of fringe.

125

Figure 4

FRINGE: D E D G

Step 5: Node D is removed from fringe. Its children C and F are generated and added to the back of fringe.

Figure 5

FRINGE: E D G C F

Step 6: Node E is removed from fringe. It has no children.

Figure 6

FRINGE: D G C F

Step 7: D is expanded; B and F are put in OPEN.

Figure 7

FRINGE: G C F B F

126

Step 8: G is selected for expansion. It is found to be a goal node. So the algorithm returns the path A C G by

following the parent pointers of the node corresponding to G. The algorithm terminates.

Breadth first search is:

 One of the simplest search strategies

 Complete. If there is a solution, BFS is guaranteed to find it.

 If there are multiple solutions, then a minimal solution will be found

 The algorithm is optimal (i.e., admissible) if all operators have the same cost. Otherwise, breadth

first search finds a solution with the shortest path length.

 Time complexity : O(bd)

 Space complexity : O(bd)

 Optimality :Yes

b - branching factor(maximum no of successors of any node),

d – Depth of the shallowest goal node

Maximum length of any path (m) in search space

Advantages: Finds the path of minimal length to the goal.

Disadvantages:

 Requires the generation and storage of a tree whose size is exponential the depth of the shallowest goal

node.

 The breadth first search algorithm cannot be effectively used unless the search space is quite small.

Depth- First- Search.

We may sometimes search the goal along the largest depth of the tree, and move up only when further traversal

along the depth is not possible. We then attempt to find alternative offspring of the parent of the node (state) last

visited. If we visit the nodes of a tree using the above principles to search the goal, the traversal made is called

depth first traversal and consequently the search strategy is called depth first search.

• Algorithm:

1. Create a variable called NODE-LIST and set it to initial state

2. Until a goal state is found or NODE-LIST is empty do

a. Remove the first element from NODE-LIST and call it E. If NODE-LIST was empty, quit

b. For each way that each rule can match the state described in E do:

127

i. Apply the rule to generate a new state

ii. If the new state is a goal state, quit and return this state

iii. Otherwise, add the new state in front of NODE-LIST

DFS illustrated:

A State Space Graph

Step 1: Initially fringe contains only the node for A.

Figure 1

FRINGE: A

Step 2: A is removed from fringe. A is expanded and its children B and C are put in front of fringe.

Figure 2

FRINGE: B C

Step 3: Node B is removed from fringe, and its children D and E are pushed in front of fringe.

128

Figure 3

FRINGE: D E C

Step 4: Node D is removed from fringe. C and F are pushed in front of fringe.

Figure 4

FRINGE: C F E C

Step 5: Node C is removed from fringe. Its child G is pushed in front of fringe.

Figure 5

FRINGE: G F E C

Step 6: Node G is expanded and found to be a goal node.

Figure 6

FRINGE: G F E C

The solution path A-B-D-C-G is returned and the algorithm terminates.

129

Depth first search is:

1. The algorithm takes exponential time.

2. If N is the maximum depth of a node in the search space, in the worst case the algorithm will take time

O(b
d

).

3. The space taken is linear in the depth of the search tree, O(bN).

Note that the time taken by the algorithm is related to the maximum depth of the search tree. If the search tree has

infinite depth, the algorithm may not terminate. This can happen if the search space is infinite. It can also happen if

the search space contains cycles. The latter case can be handled by checking for cycles in the algorithm. Thus

Depth First Search is not complete.

130

Exhaustive searches- Iterative Deeping DFS

 Description:

 It is a search strategy resulting when you combine BFS and DFS, thus combining the advantages of each

strategy, taking the completeness and optimality of BFS and the modest memory requirements of DFS.

 IDS works by looking for the best search depth d, thus starting with depth limit 0 and make a BFS and if

the search failed it increase the depth limit by 1 and try a BFS again with depth 1 and so on – first d = 0,

then 1 then 2 and so on – until a depth d is reached where a goal is found.

Algorithm:

procedure IDDFS(root)

 for depth from 0 to ∞

 found ← DLS(root, depth)

 if found ≠ null

 return found

procedure DLS(node, depth)

 if depth = 0 and node is a goal

 return node

 else if depth > 0

 foreach child of node

 found ← DLS(child, depth−1)

 if found ≠ null

 return found

 return null

Performance Measure:

o Completeness: IDS is like BFS, is complete when the branching factor b is finite.

o Optimality: IDS is also like BFS optimal when the steps are of the same cost.

 Time Complexity:

131

o One may find that it is wasteful to generate nodes multiple times, but actually it is not that costly

compared to BFS, that is because most of the generated nodes are always in the deepest level

reached, consider that we are searching a binary tree and our depth limit reached 4, the nodes

generated in last level = 24 = 16, the nodes generated in all nodes before last level = 20 + 21 + 22 +

23= 15

o Imagine this scenario, we are performing IDS and the depth limit reached depth d, now if you

remember the way IDS expands nodes, you can see that nodes at depth d are generated once, nodes

at depth d-1 are generated 2 times, nodes at depth d-2 are generated 3 times and so on, until you

reach depth 1 which is generated d times, we can view the total number of generated nodes in the

worst case as:

 N(IDS) = (b)d + (d – 1)b2
 + (d – 2)b3 + …. + (2)bd-1 + (1)bd = O(bd)

o If this search were to be done with BFS, the total number of generated nodes in the worst case will

be like:

 N(BFS) = b + b2 + b3 + b4 + …. bd + (bd + 1 – b) = O(bd + 1)

o If we consider a realistic numbers, and use b = 10 and d = 5, then number of generated nodes in

BFS and IDS will be like

 N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450

 N(BFS) = 10 + 100 + 1000 + 10000 + 100000 + 999990 = 1111100

 BFS generates like 9 time nodes to those generated with IDS.

 Space Complexity:

o IDS is like DFS in its space complexity, taking O(bd) of memory.

Weblinks:

i. https://www.youtube.com/watch?v=7QcoJjSVT38

ii. https://mhesham.wordpress.com/tag/iterative-deepening-depth-first-search

 Conclusion:

 We can conclude that IDS is a hybrid search strategy between BFS and DFS inheriting their advantages.

 IDS is faster than BFS and DFS.

 It is said that “IDS is the preferred uniformed search method when there is a large search space and the

depth of the solution is not known”.

Heuristic Searches:

https://www.youtube.com/watch?v=7QcoJjSVT38
https://mhesham.wordpress.com/tag/iterative-deepening-depth-first-search

132

A Heuristic technique helps in solving problems, even though there is no guarantee that it will never lead in the

wrong direction. There are heuristics of every general applicability as well as domain specific. The strategies are

general purpose heuristics. In order to use them in a specific domain they are coupler with some domain specific

heuristics. There are two major ways in which domain - specific, heuristic information can be incorporated into

rule-based search procedure.

A heuristic function is a function that maps from problem state description to measures desirability, usually

represented as number weights. The value of a heuristic function at a given node in the search process gives a good

estimate of that node being on the desired path to solution.

Greedy Best First Search

Greedy best-first search tries to expand the node that is closest to the goal, on the: grounds that this is likely to lead

to a solution quickly. Thus, it evaluates nodes by using just the heuristic function:

f (n) = h (n).

Taking the example of Route-finding problems in Romania, the goal is to reach Bucharest starting from the city

Arad. We need to know the straight-line distances to Bucharest from various cities as shown in Figure 8.1. For

example, the initial state is In (Arad), and the straight line distance heuristic hSLD (In (Arad)) is found to be 366.

Using the straight-line distance heuristic hSLD, the goal state can be reached faster.

Arad 366 Mehadia 241 Hirsova 151

Bucharest 0 Neamt 234 Urziceni 80

Craiova 160 Oradea 380 Iasi 226

Drobeta 242 Pitesti 100 Vaslui 199

Eforie 161 Rimnicu Vilcea 193 Lugoj 244

Fagaras 176 Sibiu 253 Zerind 374

Giurgiu 77 Timisoara 329

Figure 8.1: Values of hSLD-straight-line distances to B u c h a r e s t.

The Initial State

After Expanding Arad

133

After Expanding Sibiu

After Expanding Fagaras

Figure 8.2: Stages in a greedy best-first search for Bucharest using the straight-line distance heuristic

hSLD. Nodes are labeled with their h-values.

Figure 8.2 shows the progress of greedy best-first search using hSLD to find a path from Arad to Bucharest. The

first node to be expanded from Arad will be Sibiu, because it is closer to Bucharest than either Zerind or

Timisoara. The next node to be expanded will be Fagaras, because it is closest.

Fagaras in turn generates Bucharest, which is the goal.

134

Evaluation Criterion of Greedy Search

 Complete: NO [can get stuck in loops, e.g., Complete in finite space with repeated-state checking]

 Time Complexity: O (bm) [but a good heuristic can give dramatic improvement]

 Space Complexity: O (bm) [keeps all nodes in memory]

 Optimal: NO

Greedy best-first search is not optimal, and it is incomplete. The worst-case time and space complexity is O (bm),

where m is the maximum depth of the search space.

HILL CLIMBING PROCEDURE:

Hill Climbing Algorithm

We will assume we are trying to maximize a function. That is, we are trying to find a point in the search space that

is better than all the others. And by "better" we mean that the evaluation is higher. We might also say that the

solution is of better quality than all the others.

The idea behind hill climbing is as follows.

1. Pick a random point in the search space.

2. Consider all the neighbors of the current state.

3. Choose the neighbor with the best quality and move to that state.

4. Repeat 2 thru 4 until all the neighboring states are of lower quality.

5. Return the current state as the solution state.

We can also present this algorithm as follows (it is taken from the AIMA book (Russell, 1995) and follows the

conventions we have been using on this course when looking at blind and heuristic searches).

135

Algorithm:

Function HILL-CLIMBING(Problem) returns a solution state

Inputs: Problem, problem

Local variables: Current, a node

 Next, a node

Current = MAKE-NODE(INITIAL-STATE[Problem])

Loop do

Next = a highest-valued successor of Current

If VALUE[Next] < VALUE[Current] then return Current

Current = Next

End

You should note that this algorithm does not maintain a search tree. It only returns a final solution. Also, if two

neighbors have the same evaluation and they are both the best quality, then the algorithm will choose between

them at random.

Problems with Hill Climbing

The main problem with hill climbing (which is also sometimes called gradient descent) is that we are not

guaranteed to find the best solution. In fact, we are not offered any guarantees about the solution. It could be

abysmally bad.

You can see that we will eventually reach a state that has no better neighbours but there are better solutions

elsewhere in the search space. The problem we have just described is called a local maxima.

Simulated annealing search

A hill-climbing algorithm that never makes “downhill” moves towards states with lower value (or higher cost) is

guaranteed to be incomplete, because it can stuck on a local maximum. In contrast, a purely random walk –that is,

moving to a successor chosen uniformly at random from the set of successors – is complete, but extremely

inefficient. Simulated annealing is an algorithm that combines hill-climbing with a random walk in some way that

yields both efficiency and completeness.

Figure 10.7 shows simulated annealing algorithm. It is quite similar to hill climbing. Instead of picking the best

move, however, it picks the random move. If the move improves the situation, it is always accepted. Otherwise,

the algorithm accepts the move with some probability less than 1. The probability decreases exponentially with the

136

“badness” of the move – the amount E by which the evaluation is worsened. The probability also decreases as

the "temperature" T goes down: "bad moves are more likely to be allowed at the start when temperature is high,

and they become more unlikely as T decreases. One can prove that if the schedule lowers T slowly enough, the

algorithm will find a global optimum with probability approaching 1.

Simulated annealing was first used extensively to solve VLSI layout problems. It has been applied widely to

factory scheduling and other large-scale optimization tasks.

function S I M U L A T E D - A N NEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

local variables: current, a node

next, a node

T, a "temperature" controlling the probability of downward steps

current MAKE-NODE(INITIAL-STATE[problem])

for t l to ∞ do

T schedule[t]

if T = 0 then return current

next a randomly selected successor of current

E VALUE[next] – VALUE[current]

if E > 0 then current next

else current next only with probability eE /T

LOCAL SEARCH IN CONTINUOUS SPACES

 We have considered algorithms that work only in discrete environments, but real-world environment are

continuous.

 Local search amounts to maximizing a continuous objective function in a multi-dimensional vector space.

 This is hard to do in general.

 Can immediately retreat

 Discretize the space near each state

 Apply a discrete local search strategy (e.g., stochastic hill climbing, simulated annealing)

 Often resists a closed-form solution

137

 Fake up an empirical gradient

 Amounts to greedy hill climbing in discretized state space

 Can employ Newton-Raphson Method to find maxima.

 Continuous problems have similar problems: plateaus, ridges, local maxima, etc.

Best First Search:

 A combination of depth first and breadth first searches.

 Depth first is good because a solution can be found without computing all nodes and breadth first is good

because it does not get trapped in dead ends.

 The best first search allows us to switch between paths thus gaining the benefit of both approaches. At each

step the most promising node is chosen. If one of the nodes chosen generates nodes that are less promising

it is possible to choose another at the same level and in effect the search changes from depth to breadth. If

on analysis these are no better than this previously unexpanded node and branch is not forgotten and the

search method reverts to the

OPEN is a priorityqueue of nodes that have been evaluated by the heuristic function but which have not yet been

expanded into successors. The most promising nodes are at the front.

CLOSED are nodes that have already been generated and these nodes must be stored because a graph is being

used in preference to a tree.

Algorithm:

1. Start with OPEN holding the initial state

2. Until a goal is found or there are no nodes left on open do.

 Pick the best node on OPEN

 Generate its successors

 For each successor Do

• If it has not been generated before ,evaluate it ,add it to OPEN and record its parent

• If it has been generated before change the parent if this new path is better and in that case

update the cost of getting to any successor nodes.

138

3. If a goal is found or no more nodes left in OPEN, quit, else return to 2.

Example:

1. It is not optimal.

2. It is incomplete because it can start down an infinite path and never return to try other possibilities.

3. The worst-case time complexity for greedy search is O (bm), where m is the maximum depth of the search

space.

4. Because greedy search retains all nodes in memory, its space complexity is the same as its time complexity

139

A* Algorithm

The Best First algorithm is a simplified form of the A* algorithm.

The A* search algorithm (pronounced "Ay-star") is a tree search algorithm that finds a path from a given initial

node to a given goal node (or one passing a given goal test). It employs a "heuristic estimate" which ranks each

node by an estimate of the best route that goes through that node. It visits the nodes in order of this heuristic

estimate.

Similar to greedy best-first search but is more accurate because A* takes into account the nodes that have already

been traversed.

From A* we note that f = g + h where

g is a measure of the distance/cost to go from the initial node to the current node

h is an estimate of the distance/cost to solution from the current node.

Thus f is an estimate of how long it takes to go from the initial node to the solution

Algorithm:

1. Initialize : Set OPEN = (S); CLOSED = ()

 g(s)= 0, f(s)=h(s)

2. Fail : If OPEN = (), Terminate and fail.

3. Select : select the minimum cost state, n, from OPEN,

save n in CLOSED

4. Terminate : If n €G, Terminate with success and return f(n)

5. Expand : for each successor, m, of n

 a) If m € [OPEN U CLOSED]

 Set g(m) = g(n) + c(n , m)

 Set f(m) = g(m) + h(m)

 Insert m in OPEN

 b) If m € [OPEN U CLOSED]

http://www.fact-index.com/t/tr/tree_search_algorithm.html

140

 Set g(m) = min { g(m) , g(n) + c(n , m)}

 Set f(m) = g(m) + h(m)

 If f(m) has decreased and m € CLOSED

 Move m to OPEN.

Description:

 A* begins at a selected node. Applied to this node is the "cost" of entering this node (usually zero for the

initial node). A* then estimates the distance to the goal node from the current node. This estimate and the

cost added together are the heuristic which is assigned to the path leading to this node. The node is then

added to a priority queue, often called "open".

 The algorithm then removes the next node from the priority queue (because of the way a priority queue

works, the node removed will have the lowest heuristic). If the queue is empty, there is no path from the

initial node to the goal node and the algorithm stops. If the node is the goal node, A* constructs and

outputs the successful path and stops.

 If the node is not the goal node, new nodes are created for all admissible adjoining nodes; the exact way of

doing this depends on the problem at hand. For each successive node, A* calculates the "cost" of entering

the node and saves it with the node. This cost is calculated from the cumulative sum of costs stored with its

ancestors, plus the cost of the operation which reached this new node.

 The algorithm also maintains a 'closed' list of nodes whose adjoining nodes have been checked. If a newly

generated node is already in this list with an equal or lower cost, no further processing is done on that node

or with the path associated with it. If a node in the closed list matches the new one, but has been stored

with a higher cost, it is removed from the closed list, and processing continues on the new node.

 Next, an estimate of the new node's distance to the goal is added to the cost to form the heuristic for that

node. This is then added to the 'open' priority queue, unless an identical node is found there.

 Once the above three steps have been repeated for each new adjoining node, the original node taken from

the priority queue is added to the 'closed' list. The next node is then popped from the priority queue and the

process is repeated

http://www.fact-index.com/n/no/node.html
http://www.fact-index.com/p/pr/priority_queue.html

141

The heuristic costs from each city to Bucharest:

142

143

A* search properties:

 The algorithm A* is admissible. This means that provided a solution exists, the first solution

found by A* is an optimal solution. A* is admissible under the following conditions:

 Heuristic function: for every node n , h(n) ≤ h*(n) .

 A* is also complete.

 A* is optimally efficient for a given heuristic.

 A* is much more efficient that uninformed search.

Constraint Satisfaction Problems

Refer:

file:///D:/AI%20NOTES/chapter05.pdf

https://www.cnblogs.com/RDaneelOlivaw/p/8072603.html

Sometimes a problem is not embedded in a long set of action sequences but requires picking the best option from

available choices. A good general-purpose problem solving technique is to list the constraints of a situation (either

negative constraints, like limitations, or positive elements that you want in the final solution). Then pick the choice

that satisfies most of the constraints.

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of variables, X1;X2; : : : ;Xn,

and a set of constraints, C1;C2; : : : ;Cm. Each variable Xi has a nonempty domain Di of possible values. Each

constraint Ci involves some subset of t variables and specifies the allowable combinations of values for that

subset. A state of the problem is defined by an assignment of values to some or all of the variables, {Xi = vi;Xj =

vj ; : : :} An assignment that does not violate any constraints is called a consistent or legal assignment. A complete

assignment is one in which every variable is mentioned, and a solution to a CSP is a complete assignment that

satisfies all the constraints. Some CSPs also require a solution that maximizes an objectivefunction.

CSP can be given an incremental formulation as a standard search problem as follows:

1. Initial state: the empty assignment fg, in which all variables are unassigned.

2. Successor function: a value can be assigned to any unassigned variable, provided that it does not conflict with

previously assigned variables.

3. Goal test: the current assignment is complete.

4. Path cost: a constant cost for every step

file:///D:/AI%20NOTES/chapter05.pdf
https://www.cnblogs.com/RDaneelOlivaw/p/8072603.html

144

Examples:

1. The best-known category of continuous-domain CSPs is that of linear

programming problems, where constraints must be linear inequalities forming a

convex region.

2. Crypt arithmetic puzzles.

Example: The map coloring problem.

The task of coloring each region red, green or blue in such a way that no neighboring regions have the

same color.

We are given the task of coloring each region red, green, or blue in such a way that the neighboring

regions must not have the same color.

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q, NSW, V, SA, and T. The

domain of each variable is the set {red, green, blue}. The constraints require neighboring regions to have

distinct colors: for example, the allowable combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. (The constraint can also be

represented as the inequality WA ≠ NT). There are many possible solutions, such as {WA = red, NT =

green, Q = red, NSW = green, V = red, SA = blue, T = red}.Map of Australia showing each of its states

and territories

145

Constraint Graph: A CSP is usually represented as an undirected graph, called constraint graph where the

nodes are the variables and the edges are the binary constraints.

The map-coloring problem represented as a constraint graph.

CSP can be viewed as a standard search problem as follows:

> Initial state : the empty assignment {},in which all variables are unassigned.

> Successor function: a value can be assigned to any unassigned variable, provided that it does not

conflict with previously assigned variables.

> Goal test: the current assignment is complete.

> Path cost: a constant cost(E.g.,1) for every step.

146

UNIT II

Game Playing

Adversarial search, or game-tree search, is a technique for analyzing an adversarial game in order to try to

determine who can win the game and what moves the players should make in order to win. Adversarial search is

one of the oldest topics in Artificial Intelligence. The original ideas for adversarial search were developed by

Shannon in 1950 and independently by Turing in 1951, in the context of the game of chess—and their ideas still

form the basis for the techniques used today.

2-Person Games:

o Players: We call them Max and Min.

o Initial State: Includes board position and whose turn it is.

o Operators: These correspond to legal moves.

o Terminal Test: A test applied to a board position which determines whether the game is over. In

chess, for example, this would be a checkmate or stalemate situation.

o Utility Function: A function which assigns a numeric value to a terminal state. For example, in

chess the outcome is win (+1), lose (-1) or draw (0). Note that by convention, we always measure

utility relative to Max.

MiniMax Algorithm:

1. Generate the whole game tree.

2. Apply the utility function to leaf nodes to get their values.

3. Use the utility of nodes at level n to derive the utility of nodes at level n-1.

4. Continue backing up values towards the root (one layer at a time).

5. Eventually the backed up values reach the top of the tree, at which point Max chooses the move that yields

the highest value. This is called the minimax decision because it maximises the utility for Max on the

assumption that Min will play perfectly to minimise it.

147

Example:

Properties of minimax:

148

 Complete : Yes (if tree is finite)

 Optimal : Yes (against an optimal opponent)

 Time complexity : O(bm)

 Space complexity : O(bm) (depth-first exploration)

 For chess, b ≈ 35, m ≈100 for "reasonable" games

 exact solution completely infeasible.

Limitations

– Not always feasible to traverse entire tree

– Time limitations

Alpha-beta pruning algorithm:

• Pruning: eliminating a branch of the search tree from consideration without exhaustive examination of

each node

• - Pruning: the basic idea is to prune portions of the search tree that cannot improve the utility value of

the max or min node, by just considering the values of nodes seen so far.

• Alpha-beta pruning is used on top of minimax search to detect paths that do not need to be explored. The

intuition is:

• The MAX player is always trying to maximize the score. Call this .

• The MIN player is always trying to minimize the score. Call this .

• Alpha cutoff: Given a Max node n, cutoff the search below n (i.e., don't generate or examine any more of

n's children) if alpha(n) >= beta(n)

(alpha increases and passes beta from below)

• Beta cutoff.: Given a Min node n, cutoff the search below n (i.e., don't generate or examine any more of

n's children) if beta(n) <= alpha(n)

(beta decreases and passes alpha from above)

• Carry alpha and beta values down during search Pruning occurs whenever alpha >= beta

149

Algorithm:

150

Example:

1) Setup phase: Assign to each left-most (or right-most) internal node of the tree,

 variables: alpha = -infinity, beta = +infinity

2) Look at first computed final configuration value. It’s a 3. Parent is a min node, so

set the beta (min) value to 3.

151

3) Look at next value, 5. Since parent is a min node, we want the minimum of

3 and 5 which is 3. Parent min node is done – fill alpha (max) value of its parent max

node. Always set alpha for max nodes and beta for min nodes. Copy the state of the max parent node into

the second unevaluated min child.

4) Look at next value, 2. Since parent node is min with b=+inf, 2 is smaller, change b.

152

5) Now, the min parent node has a max value of 3 and min value of 2. The value of the

2nd child does not matter. If it is >2, 2 will be selected for min node. If it is <2, it will be selected for min

node, but since it is <3 it will not get selected for the parent max node. Thus, we prune the right subtree of

the min node. Propagate max value up the tree.

6) Max node is now done and we can set the beta value of its parent and propagate node

 state to sibling subtree’s left-most path.

153

7) The next node is 10. 10 is not smaller than 3, so state of parent does not change. We still have to look at

the 2nd child since alpha is still –inf.

8) The next node is 4. Smallest value goes to the parent min node. Min subtree is done, so the parent max

node gets the alpha (max) value from the child. Note that if the max node had a 2nd subtree, we can prune it

since a>b.

154

9) Continue propagating value up the tree, modifying the corresponding alpha/beta values. Also propagate

the state of root node down the left-most path of the right subtree.

10) Next value is a 2. We set the beta (min) value of the min parent to 2. Since no other children exist, we

propagate the value up the tree.

155

11) We have a value for the 3rd level max node, now we can modify the beta (min) value of the min parent to

2. Now, we have a situation that a>b and thus the value of the rightmost subtree of the min node does not

matter, so we prune the whole subtree.

12) Finally, no more nodes remain, we propagate values up the tree. The root has a value of 3 that comes

from the left-most child. Thus, the player should choose the left-most child’s move in order to maximize

his/her winnings. As you can see, the result is the same as with the mini-max example, but we did not visit

all nodes of the tree.

156

Knowledge Based Agents A knowledge-based agent needs a KB and an inference mechanism. It operates by

storing sentences in its knowledge base, inferring new sentences with the inference mechanism, and using

them to deduce which actions to take. ... The interpretation of a sentence is the fact to which it refers.

Knowledge base = set of sentences in a formal language Declarative approach to building an agent (or other

system): Tell it what it needs toknow - Thenitcan Askitselfwhattodo—answersshouldfollowfromtheKB

Agents can be viewed at the knowledge leveli.e., what they know, regardless of howimplemented or at the

implementation leveli.e.,data structuresinKBand algorithmsthatmanipulatethem. The Wumpus World:

A variety of "worlds" are being used as examples for Knowledge Representation, Reasoning, and Planning.

Among them the Vacuum World, the Block World, and the Wumpus World. The Wumpus World was

introduced by Genesereth, and is discussed in Russell-Norvig. The Wumpus World is a simple world (as is the

Block World) for which to represent knowledge and to reason. It is a cave with a number of rooms, represented

as a 4x4 square

157

Rules of the Wumpus World The neighborhood of a node consists of the four squares north, south, east, and

west of the given square. In a square the agent gets a vector of percepts, with components Stench, Breeze,

Glitter, Bump, Scream For example [Stench, None, Glitter, None, None] Stench is perceived at a square iff

the wumpus is at this square or in its neighborhood. Breeze is perceived at a square iff a pit is in the

neighborhood of this square. Glitter is perceived at a square iff gold is in this square Bump is perceived at

a square iff the agent goes Forward into a wall Scream is perceived at a square iff the wumpus is killed

anywhere in the cave An agent can do the following actions (one at a time): Turn (Right), Turn (Left),

Forward, Shoot, Grab, Release, Climb The agent can go forward in the direction it is currently facing, or

Turn Right, or Turn Left. Going forward into a wall will generate a Bump percept. The agent has a single

arrow that it can shoot. It will go straight in the direction faced by the agent until it hits (and kills) the wumpus,

or hits (and is absorbed by) a wall. The agent can grab a portable object at the current square or it can

Release an object that it is holding. The agent can climb out of the cave if at the Start square.The Start

square is (1,1) and initially the agent is facing east. The agent dies if it is in the same square asthe wumpus.

The objective of the game is to kill the wumpus, to pick up the gold, and to climb out with it. Representing our

Knowledge about the Wumpus World Percept(x, y) Where x must be a percept vector and y must be a

situation. It means that at situation y theagentperceives x.For convenience we introduce the following

definitions: Percept([Stench,y,z,w,v],t) = > Stench(t) Percept([x,Breeze,z,w,v],t) = > Breeze(t)

Percept([x,y,Glitter,w,v],t) = > AtGold(t) Holding(x, y)

Where x is an object and y is a situation. It means that the agent is holding the object x in situation y. Action(x,

y) Where x must be an action (i.e. Turn (Right), Turn (Left), Forward,) and y must be a situation. It means that

at situation y the agent takes action x. At(x,y,z) Where x is an object, y is a Location, i.e. a pair [u,v] with u

158

and v in {1, 2, 3, 4}, and z is a situation. It means that the agent x in situation z is at location y. Present(x,s)

Means that object x is in the current room in the situation s. Result(x, y) It means that the result of applying

action x to the situation y is the situation Result(x,y).Notethat Result(x,y) is a term, not a statement. For

example we can say Result(Forward, S0) = S1 Result(Turn(Right),S1) = S2 These definitions could be

made more general. Since in the Wumpus World there is a single agent, there is no reason for us to make

predicates and functions relative to a specific agent. In other"worlds" we should change things appropriately.

Validity And Satisfiability

A sentence is valid

if it is true in all models, e.g.,True,A∨¬A, A⇒A,(A∧(A⇒B)) ⇒B Validity is connected to inference via the

Deduction Theorem: KB |= αif and onlyif(KB⇒α) isvalid Asentenceissatisfiableifitistrue insome model e.g.,

A∨B, C Asentence isunsatisfiableifitistrueinnomodels e.g., A ∧¬A Satisfiability is connected to inference via

the following: KB|=α iff(KB∧¬α)isunsatisfiable i.e., prove α by reductionandabsurdum

 Proof Methods

Proof methods divide into (roughly)two kinds:

 Application of inference rules – Legitimate(sound)generationofnewsentencesfromold –

Proof=asequenceofinferenceruleapplicationscanuseinferencerulesasoperatorsinastand ardsearch algorithm –

Typicallyrequiretranslationofsentencesintoanormalform Model checking –

Truthtableenumeration(alwaysexponentialinn) – Improvedbacktracking,e.g.,Davis–Putnam–Loge Mann–

Loveland – Heuristic searchinmodelspace(soundbutincomplete) e.g.,min-conflicts-likehillclimbingalgorithms

Forward and Backward Chaining

Horn Form (restricted) KB = conjunction of Horn clauses Horn clause = – proposition symbol;or –

(conjunctionofsymbols) ⇒ symbol Example KB: C∧(B ⇒ A) ∧ (C∧D ⇒ B) Modus Ponens (for Horn Form):

complete for Horn KBs

α1,...,αn,α1∧···∧α⇒ β β

Canbeusedwithforwardchaining orbackwardchaining. These algorithms areverynaturalandruninlineartime.,

159

ForwardChaining

Idea: If anyrulewhosepremisesaresatisfiedintheKB, additsconclusiontotheKB,untilqueryisfound

ForwardChaining Algorithm

160

Proof of Completeness

 FC derives every atomic sentence that is entailed by KB 1.

FCreachesafixedpointwherenonewatomicsentencesarederived 2.

Considerthefinalstateasamodelm,assigningtrue/falsetosymbols 3. Every clause in the original KB is true inm i.

Proof:Supposeaclausea1∧...∧ak⇒bisfalsei nm Then a1∧. . . ∧akis true in m and b is false in m

Thereforethealgorithmhasnotreachedafixedpoint ! 4. Hence m is a model ofKB 5.

IfKB|=q,thenqistrueineverymodelofKB,includingm a. Generalidea: constructanymodelofKBby

soundinference,checkα

Backward Chaining

161

Idea:workbackwardsfromthequeryq: to prove q byBC, check if q is known already, or prove by BC all

premises of some rule concluding q Avoidloops: checkifnewsubgoalisalreadyonthegoalstack Avoid repeated

work: check if new subgoal 1. has already been proved true, or 2. has alreadyfailed

Forward vs Backward Chaining

162

FC is data-driven, cf. automatic, unconscious processing, e.g.,objectrecognition,routinedecisions

Maydolotsofworkthatisirrelevanttothegoal BC is goal-driven, appropriate forproblem-solving, e.g., Where are

my keys? How do I get into a PhD program? Complexity of BC can be much less than linear in size of KB

Knowledge and Reasoning

 These rules exhibit a trivial form of the reasoning process called perception.

 Simple “reflex” behavior can also be implemented by quantified implication sentences.

 For example, we have ∀tGlitter (t) ⇒BestAction(Grab, t) .

 Given the percept and rules from the preceding paragraphs, this would yield the desired conclusion Best

Action (Grab, 5)—that is, Grab is the right thing to do.

 Environment Representation

 Objects are squares, pits, and the wumpus. Each square could be named—Square1,2and so on—but then the

fact that Square1,2and Square1,3 are adjacent would have to be an “extra” fact, and this needs one suchfact

for each pair of squares. It is better to use a complex term in which the row and columnappear as integers;

 For example, we can simply use the list term [1, 2].

 Adjacency of any two squares can be defined as:

 ∀x, y, a, b Adjacent ([x, y], [a, b]) ⇔ (x = a ∧(y = b − 1 ∨y = b + 1)) ∨(y = b ∧(x = a − 1 ∨x = a + 1)).

 Each pit need not be distinguished with each other. The unary predicate Pit is true of squares containing pits.

 Since there is exactly one wumpus, a constant Wumpus is just as good as a unary predicate. The agent’s

location changes over time, so we write At (Agent, s, t) to mean that theagent is at square s at time t.

 To specify the Wumpus location (for example) at [2, 2] we can write ∀t At (Wumpus, [2, 2], t).

 Objects can only be at one location at a time: ∀x, s1, s2, t At(x, s1, t) ∧At(x, s2, t) ⇒s1 = s2 .

 Given its current location, the agent can infer properties of the square from properties of its current percept.

 For example, if the agent is at a square and perceives a breeze, then that square is breezy:

 ∀s, t At(Agent, s, t) ∧Breeze(t) ⇒Breezy(s) .

 It is useful to know that a square is breezy because we know that the pits cannot move about.

163

Breezy has no time argument.

Having discovered which places are breezy (or smelly) and, very importantly, not breezy (or not smelly), the

agent can deduce where the pits =e (and where the wumpus is).

There are two kinds of synchronic rules that could allow such deductions:

Diagnostic rules:

Diagnostic rules lead from observed effects to hidden causes. For finding pits, the obvious diagnostic rules say

that if a square is breezy, some adjacent square must contain a pit, or

∀s Breezy(s) ⇒∃r Adjacent (r, s)∧Pit(r) ,

and that if a square is not breezy, no adjacent square contains a pit: ∀s￢Breezy (s) ⇒￢∃r Adjacent (r, s) ∧

Pit (,r) .Combining these two, we obtain the biconditional sentence ∀s Breezy (s)⇔∃r Adjacent(r, s) ∧ Pit (r)

.

Causal rules:

Causal rules reflect the assumed direction of causality in the world: some hidden property of the world causes

certain percepts to be generated. For example, a pit causes all adjacent squares to be breezy:

 and if all squares adjacent to a given square are pitless, the square will not be breezy: ∀s[∀r Adjacent (r, s)

⇒￢Pit (r)] ⇒￢Breezy (s) .

It is possible to show that these two sentences together are logically equivalent to the biconditional sentence “

∀s Breezy (s)⇔∃r Adjacent(r, s) ∧ Pit (r)” .

 The biconditional itself can also be thought of as causal, because it states how the truth value of Breezy is

generated from the world state.

 Systems that reason with causal rules are called model-based reasoning systems, because the causal rules form

a model of how the environment operates.

 Whichever kind of representation the agent uses, ifthe axioms correctly and completely describe the way the

world works and the way that percepts are produced, then any complete logical inference procedure will infer

the strongest possible description of the world state, given the available percepts. Thus, the agent designer can

concentrate on getting the knowledgeright, without worrying too much about the processes of deduction.

164

FIRST ORDER LOGIC:

PROCEDURAL LANGUAGES AND PROPOSITIONAL LOGIC:

Drawbacks of Procedural Languages

 Programming languages (such as C++ or Java or Lisp) are by far the largest class of formal languages in

common use. Programs themselves represent only computational processes. Data structures within programs

can represent facts.

 For example, a program could use a 4 × 4 array to represent the contents of the wumpus world. Thus, the

programming language statement World[2,2]← Pit is a fairly natural way to assert that there is a pit in square

[2,2].

What programming languages lack is any general mechanism for deriving facts from other facts; each update

to a data structure is done by a domain-specific procedure whose details are derived by the programmer from

his or her own knowledge of the domain.

 A second drawback of is the lack the expressiveness required to handle partial information . For example

data structures in programs lack the easy way to say, “There is a pit in [2,2] or [3,1]” or “If the wumpus is in

[1,1] then he is not in [2,2].”

Advantages of Propositional Logic

 The declarative nature of propositional logic, specify that knowledge and inference are separate, and

inference is entirely domain-independent. Propositional logic is a declarative language because its semantics

is based on a truth relation between sentences and possible worlds. It also has sufficient expressive power to

deal with partial information, using disjunction and negation.

 Propositional logic has a third COMPOSITIONALITY property that is desirable in representation

languages, namely, compositionality. In a compositional language, the meaning of a sentence is a function of

the meaning of its parts. For example, the meaning of “S1,4∧ S1,2” is related to the meanings of “S1,4” and

“S1,2.

Drawbacks of Propositional Logic Propositional logic lacks the expressive power to concisely describe an

environment with many objects.

165

For example, we were forced to write a separate rule about breezes and pits for each square, such as B1,1⇔

(P1,2 ∨ P2,1) .

 In English, it seems easy enough to say, “Squares adjacent to pits are breezy.” The syntax and semantics

of English somehow make it possible to describe the environment concisely

SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC

 Models for first-order logic :

The models of a logical language are the formal structures that constitute the possible worlds under

consideration. Each model links the vocabulary of the logical sentences to elements of the possible world, so

that the truth of any sentence can be determined. Thus, models for propositional logic link proposition

symbols to predefined truth values. Models for first-order logic have objects. The domain of a model is the set

of objects or domain elements it contains. The domain is required to be nonempty—every possible world must

contain at least one object.

 A relation is just the set of tuples of objects that are related. Unary Relation: Relations relates to single

Object Binary Relation: Relation Relates to multiple objects Certain kinds of relationships are best

considered as functions, in that a given object must be related to exactly one object.

 For Example:

Richard the Lionheart, King of England from 1189 to 1199; His younger brother, the evil King John, who

ruled from 1199 to 1215; the left legs of Richard and John; crown

166

Unary Relation : John is a king Binary Relation :crown is on head of john , Richard is brother ofjohn The

unary "left leg" function includes the following mappings: (Richard the Lionheart) ->Richard's left leg (King

John) ->Johns left Leg

Symbols and interpretations

Symbols are the basic syntactic elements of first-order logic. Symbols stand for objects, relations, and

functions.

 The symbols are of three kinds: Constant symbols which stand for objects; Example: John, Richard

Predicate symbols, which stand for relations; Example: OnHead, Person, King, and Crown Function

symbols, which stand for functions. Example: left leg

 Symbols will begin with uppercase letters.

Interpretation The semantics must relate sentences to models in order to determine truth. For this to happen, we

need an interpretation that specifies exactly which objects, relations and functions are referred to by the

constant, predicate, and function symbols.

 For Example:

167

 Richard refers to Richard the Lionheart and John refers to the evil king John. Brother refers to the

brotherhood relation OnHead refers to the "on head relation that holds between the crown and King John;

Person, King, and Crown refer to the sets of objects that are persons, kings, and crowns. LeftLeg refers to

the "left leg" function,

 The truth of any sentence is determined by a model and an interpretation for the sentence's symbols.

Therefore, entailment, validity, and so on are defined in terms of all possiblemodels and all possible

interpretations. The number of domain elements in each model may be unbounded-for example, the domain

elements may be integers or real numbers. Hence, the number of possible models is anbounded, as is the

number of interpretations.

 Term

 A term is a logical expression that refers to an object. Constant symbols are therefore terms. Complex Terms

A complex term is just a complicated kind of name. A complex term is formed by a function symbol followed

by a parenthesized list of terms as arguments to the function symbol For example: "King John's left leg"

Instead of using a constant symbol, we use LeftLeg(John). The formal semantics of terms :

Consider a term f (tl,. . . , t,). The function symbol frefers to some function in the model (F); the argument

terms refer to objects in the domain (call them d1….dn); and the term as a whole refers to the object that is the

value of the function Fapplied to dl, . . . , d,. For example,: the LeftLeg function symbol refers to the function “

(King John) -+ John's left leg” and John refers to King John, then LeftLeg(John) refers to King John's left leg.

In this way, the interpretation fixes the referent of every term.

 Atomic sentences

 An atomic sentence is formed from a predicate symbol followed by a parenthesized list of terms: For

Example: Brother(Richard, John).

 Atomic sentences can have complex terms as arguments. For Example: Married (Father(Richard), Mother(

John)).

 An atomic sentence is true in a given model, under a given interpretation, if the relation referred to by the

predicate symbol holds among the objects referred to by the arguments

 Complex sentences Complex sentences can be constructed using logical Connectives, just as in propositional

calculus. For Example:

168

Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is called a variable.

Variables are lowercase letters. A variable is a term all by itself, and can also serve as the argument of a

function A term with no variables is called a ground term.

 Assume we can extend the interpretation in different ways: x→ Richard the Lionheart, x→ King John, x→

Richard’s left leg, x→ John’s left leg, x→ the crown

The universally quantified sentence ∀x King(x) ⇒Person(x) is true in the original model if the sentence

King(x) ⇒Person(x) is true under each of the five extended interpretations. That is, the universally quantified

sentence is equivalent to asserting the following five sentences:

 Richard the Lionheart is a king ⇒Richard the Lionheart is a person. King John is a king ⇒King John is a

person. Richard’s left leg is a king ⇒Richard’s left leg is a person. John’s left leg is a king ⇒John’s left leg is a

person. The crown is a king ⇒the crown is a person.

Existential quantification (∃)

 Universal quantification makes statements about every object. Similarly, we can make a statement about some

object in the universe without naming it, by using an existential quantifier.

169

 “The sentence ∃x P says that P is true for at least one object x. More precisely, ∃x P is true in a given model if

P is true in at least one extended interpretationthat assigns x to a domain element.” ∃x is pronounced “There

exists an x such that . . .” or “For some x . . .”.

 For example, that King John has a crown on his head, we write ∃xCrown(x) ∧OnHead(x, John)

Given assertions:

 Richard the Lionheart is a crown ∧Richard the Lionheart is on John’s head; King John is a crown ∧King John

is on John’s head; Richard’s left leg is a crown ∧Richard’s left leg is on John’s head; John’s left leg is a crown

∧John’s left leg is on John’s head; The crown is a crown ∧the crown is on John’s head. The fifth assertion is

true in the model, so the original existentially quantified sentence is true in the model. Just as ⇒appears to be

the natural connective to use with ∀, ∧is the natural connective to use with ∃.

 Nested quantifiers

 One can express more complex sentences using multiple quantifiers.

 For example, “Brothers are siblings” can be written as ∀x∀y Brother (x, y) ⇒Sibling(x, y). Consecutive

quantifiers of the same type can be written as one quantifier with several variables.

 For example, to say that siblinghood is a symmetric relationship,

 we can write∀x, y Sibling(x, y) ⇔Sibling(y, x).

 In other cases we will have mixtures.

For example: 1. “Everybody loves somebody” means that for every person, there is someone that person

loves: ∀x∃y Loves(x, y) . 2. On the other hand, to say “There is someone who is loved by everyone,” we write

∃y∀x Loves(x, y) .

 Connections between ∀and ∃

Universal and Existential quantifiers are actually intimately connected with each other, through negation.

Example assertions: 1. “ Everyone dislikes medicine” is the same as asserting “ there does not exist someone

who likes medicine” , and vice versa: “∀x ￢Likes(x, medicine)” is equivalent to “￢∃x Likes(x, medicine)”.

170

2. “Everyone likes ice cream” means that “ there is no one who does not like ice cream” : ∀xLikes(x,

IceCream) is equivalent to ￢∃x ￢Likes(x, IceCream) .

Because ∀is really a conjunction over the universe of objects and ∃is a disjunction that they obey De Morgan’s

rules. The De Morgan rules for quantified and unquantified sentences are as follows:

Equality

First-order logic includes one more way to make atomic sentences, other than using a predicateand terms .We

can use the equality symbol to signify that two terms refer to the same object.

For example,

“Father(John) =Henry” says that the object referred to by Father (John) and the object referred to by Henry are

the same.

 Because an interpretation fixes the referent of any term, determining the truth of an equality sentence is simply

a matter of seeing that the referents of the two terms are the same object.The equality symbol can be used to

state facts about a given function.It can also be used with negation to insist that two terms are not the same

object.

 For example,

 “Richard has at least two brothers” can be written as, ∃x, y Brother (x,Richard) ∧Brother (y,Richard)

∧￢(x=y) .

 The sentence

171

 ∃x, y Brother (x,Richard) ∧Brother (y,Richard) does not have the intended meaning. In particular, it is true

only in the model where Richard has only one brother considering the extended interpretation in which both x

and y are assigned to King John. The addition of ￢(x=y) rules out such models.

USING FIRST ORDER LOGIC Assertions and queries in first-order logic

 Assertions:

 Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such sentences are

called assertions.

 For example,

 John is a king, TELL (KB, King (John)). Richard is a person. TELL (KB, Person (Richard)). All kings are

persons: TELL (KB, ∀x King(x) ⇒Person(x)).

 Asking Queries:

 We can ask questions of the knowledge base using ASK. Questions asked with ASK are called queries or

goals.

 For example,

 ASK (KB, King (John)) returns true.

172

 Anyquery that is logically entailed by the knowledge base should be answered affirmatively.

 Forexample, given the two preceding assertions, the query:

 “ASK (KB, Person (John))” should also return true.

 Substitution or binding list

 We can ask quantified queries, such as ASK (KB, ∃x Person(x)) .

 The answer is true, but this is perhaps not as helpful as we would like. It is rather like answering “Can you tell

me the time?” with “Yes.”

 If we want to know what value of x makes the sentence true, we will need a different function, ASKVARS,

which we call with ASKVARS (KB, Person(x)) and which yields a stream of answers.

 In this case there will be two answers: {x/John} and {x/Richard}. Such an answer is called a substitution or

binding list.

 ASKVARS is usually reserved for knowledge bases consisting solely of Horn clauses, because in such

knowledge bases every way of making the query true will bind the variables to specific values.

 The kinship domain

 The objects in Kinship domain are people.

 We have two unary predicates, Male and Female.

 Kinship relations—parenthood, brotherhood, marriage, and so on—are represented by binary predicates:

Parent, Sibling, Brother,Sister,Child, Daughter, Son, Spouse, Wife, Husband, Grandparent,Grandchild, Cousin,

Aunt, and Uncle.

 We use functions for Mother and Father, because every person has exactly one of each of these.

 We can represent each function and predicate, writing down what we know in termsof the other symbols.

 For example:- 1. one’s mother is one’s female parent: ∀m, c Mother (c)=m ⇔Female(m) ∧Parent(m, c) .

2. One’s husband is one’s male spouse: ∀w, h Husband(h,w) ⇔Male(h) ∧Spouse(h,w) .

3. Male and female are disjoint categories: ∀xMale(x) ⇔￢Female(x) .

4. Parent and child are inverse relations: ∀p, c Parent(p, c) ⇔Child (c, p) .

173

5. A grandparent is a parent of one’s parent: ∀g, c Grandparent (g, c) ⇔∃p Parent(g, p) ∧Parent(p, c) .

6. A sibling is another child of one’s parents: ∀x, y Sibling(x, y) ⇔x _= y ∧∃p Parent(p, x) ∧Parent(p, y) .

Axioms:

Each of these sentences can be viewed as an axiom of the kinship domain. Axioms are commonly associated

with purely mathematical domains. They provide the basic factual information from which useful conclusions

can be derived.

Kinship axioms are also definitions; they have the form ∀x, y P(x, y) ⇔. . ..

The axioms define the Mother function, Husband, Male, Parent, Grandparent, and Sibling predicates in terms

of other predicates.

Our definitions “bottom out” at a basic set of predicates (Child, Spouse, and Female) in terms of which the

others are ultimately defined. This is a natural way in which to build up the representation of a domain, and it

is analogous to the way in which software packages are built up by successive definitions of subroutines from

primitive library functions.

Theorems:

Not all logical sentences about a domain are axioms. Some are theorems—that is, they are entailed by the

axioms.

For example, consider the assertion that siblinghood is symmetric: ∀x, y Sibling(x, y) ⇔Sibling(y, x) .

It is a theorem that follows logically from the axiom that defines siblinghood. If we ASK the knowledge base

this sentence, it should return true. From a purely logical point of view, a knowledge base need contain only

axioms and no theorems, because the theorems do not increase the set of conclusions that follow from the

knowledge base. From a practical point of view, theorems are essential to reduce the computational cost of

deriving new sentences. Without them, a reasoning system has to start from first principles every time.

Axioms Axioms without Definition

Not all axioms are definitions. Some provide more general information about certain predicates without

constituting a definition. Indeed, some predicates have no complete definition because we do not know enough

to characterize them fully.

For example, there is no obvious definitive way to complete the sentence

174

∀xPerson(x) ⇔. . .

Fortunately, first-order logic allows us to make use of the Person predicate without completely defining it.

Instead, we can write partial specifications of properties that every person has and properties that make

something a person:

∀xPerson(x) ⇒. . . ∀x . . . ⇒Person(x) .

Axioms can also be “just plain facts,” such as Male (Jim) and Spouse (Jim, Laura).Such facts form the

descriptions of specific problem instances, enabling specific questions to be answered. The answers to these

questions will then be theorems that follow from the axioms

Numbers, sets, and lists

Number theory

Numbers are perhaps the most vivid example of how a large theory can be built up from NATURAL

NUMBERS a tiny kernel of axioms. We describe here the theory of natural numbers or non-negative integers.

We need:

 predicate NatNum that will be true of natural numbers; one PEANO AXIOMS constant symbol, 0;

One function symbol, S (successor). The Peano axioms define natural numbers and addition.

Natural numbers are defined recursively: NatNum(0) . ∀n NatNum(n) ⇒ NatNum(S(n)) .

That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n) is a natural number.

So the natural numbers are 0, S(0), S(S(0)), and so on. We also need axioms to constrain the successor

function: ∀n 0 != S(n) . ∀m, n m != n ⇒ S(m) != S(n) .

 Now we can define addition in terms of the successor function: ∀m NatNum(m) ⇒ + (0, m) = m . ∀m, n

NatNum(m) ∧ NatNum(n) ⇒ + (S(m), n) = S(+(m, n))

The first of these axioms says that adding 0 to any natural number m gives m itself. Addition is represented

using the binary function symbol “+” in the term + (m, 0);

To make our sentences about numbers easier to read, we allow the use of infix notation. We can also write

S(n) as n + 1, so the second axiom becomes :

∀m, n NatNum (m) ∧ NatNum(n) ⇒ (m + 1) + n = (m + n)+1 .

175

This axiom reduces addition to repeated application of the successor function. Once we have addition, it is

straightforward to define multiplication as repeated addition, exponentiation as repeated multiplication, integer

division and remainders, prime numbers, and so on. Thus, the whole of number theory (including

cryptography) can be built up from one constant, one function, one predicate and four axioms.

Sets

The domain of sets is also fundamental to mathematics as well as to commonsense reasoning. Sets can be

represented as individualsets, including empty sets.

Sets can be built up by: adding an element to a set or Taking the union or intersection of two sets.

Operations that can be performed on sets are: To know whether an element is a member of a set

Distinguish sets from objects that are not sets.

Vocabulary of set theory:

The empty set is a constant written as { }. There is one unary predicate, Set, which is true of sets. The binary

predicates are

 x∈ s (x is a member of set s) s1 ⊆ s2 (set s1 is a subset, not necessarily proper, of set s2).

The binary functions are

 s1 ∩ s2 (the intersection of two sets), s1 ∪ s2 (the union of two sets), and {x|s} (the set resulting from

adjoining element x to set s).

One possible set of axioms is as follows:

 The only sets are the empty set and those made by adjoining something to a set: ∀sSet(s) ⇔(s={}) ∨(∃x, s2

Set(s2) ∧s={x|s2}) . The empty set has no elements adjoined into it. In other words, there is no way to

decompose {} into a smaller set and an element: ￢∃x, s {x|s}={} . Adjoining an element already in the set

has no effect: ∀x, s x∈s ⇔s={x|s} . The only members of a set are the elements that were adjoined into it.

We express this recursively, saying that x is a member of s if and only if s is equal to some set s2 adjoined with

some element y, where either y is the same as x or x is a member of s2: ∀x, s x∈s ⇔∃y, s2 (s={y|s2} ∧(x=y

∨x∈s2)) A set is a subset of another set if and only if all of the first set’s members are members of the

176

second set: ∀s1, s2 s1 ⊆s2 ⇔(∀x x∈s1 ⇒x∈s2) Two sets are equal if and only if each is a subset of the

other: ∀s1, s2 (s1 =s2) ⇔(s1 ⊆s2 ∧s2 ⊆s1)

 An object is in the intersection of two sets if and only if it is a member of both sets: ∀x, s1, s2 x∈(s1 ∩ s2)

⇔(x∈s1 ∧x∈s2) An object is in the union of two sets if and only if it is a member of either set: ∀x, s1, s2

x∈(s1 ∪s2) ⇔(x∈s1 ∨x∈s2)

Lists : are similar to sets. The differences are that lists are ordered and the same element canappear more than

once in a list. We can use the vocabulary of Lisp for lists:

 Nil is the constant list with no elements; Cons, Append, First, and Rest are functions; Find is the

predicate that does for lists what Member does for sets. List? is a predicate that is true only of lists. The

empty list is []. The term Cons(x, y), where y is a nonempty list, is written [x|y]. The term Cons(x, Nil)

(i.e., the list containing the element x) is written as [x]. A list of several elements, such as [A,B,C],

corresponds to the nested term Cons(A, Cons(B, Cons(C, Nil))).

The wumpus world

Agents Percepts and Actions

The wumpus agent receives a percept vector with five elements. The corresponding first-order sentence stored

in the knowledge base must include both the percept and the time at which it occurred; otherwise, the agent

will get confused about when it saw what.We use integers for time steps. A typical percept sentence would be

Percept ([Stench, Breeze, Glitter,None, None], 5).

Here, Percept is a binary predicate, and Stench and so on are constants placed in a list. The actions in the

wumpus world can be represented by logical terms:

Turn (Right), Turn (Left), Forward,Shoot,Grab, Climb.

To determine which is best, the agent program executes the query:

ASKVARS (∃a BestAction (a, 5)), which returns a binding list such as {a/Grab}.

The agent program can then return Grab as the action to take.

177

The raw percept data implies certain facts about the current state.

For example: ∀t, s, g, m, c Percept ([s, Breeze, g,m, c], t) ⇒Breeze(t) , ∀t, s, b, m, c Percept ([s, b, Glitter,m,

c], t) ⇒Glitter (t) ,

Propositional Vs First Order Inference

Earlier inference in first order logic is performed with Propositionalization which is a process of converting the

Knowledgebase present in First Order logic into Propositional logic and on that using any inference mechanisms

of propositional logic are used to check inference.

Inference rules for quantifiers:

 There are some Inference rules that can be applied to sentences with quantifiers to obtain sentences without

quantifiers. These rules will lead us to make the conversion.

Universal Instantiation (UI):

The rule says that we can infer any sentence obtained by substituting a ground term (a term without variables) for

the variable. Let SUBST (θ) denote the result of applying the substitution θ to the sentence a. Then the rule is

written

For any variable v and ground term g.

For example, there is a sentence in knowledge base stating that all greedy kings are Evils

For the variable x, with the substitutions like {x/John},{x/Richard}the following sentences can be inferred.

Thus a universally quantified sentence can be replaced by the set of all possible instantiations.

Existential Instantiation (EI):

The existential sentence says there is some object satisfying a condition, and the instantiation process is just giving

a name to that object, that name must not already belong to another object. This new name is called a Skolem

constant. Existential Instantiation is a special case of a more general process called “skolemization”.

178

 For any sentence a, variable v, and constant symbol k that does not appear elsewhere in the knowledge base,

For example, from the sentence

So, we can infer the sentence

As long as C1 does not appear elsewhere in the knowledge base. Thus an existentially quantified sentence can be

replaced by one instantiation

 Elimination of Universal and Existential quantifiers should give new knowledge base which can be shown to be

inferentially equivalent to old in the sense that it is satisfiable exactly when the original knowledge base is

satisfiable.

Reduction to propositional inference:

Once we have rules for inferring non quantified sentences from quantified sentences, it becomes possible to reduce

first-order inference to propositional inference. For example, suppose our knowledge base contains just the

sentences

Then we apply UI to the first sentence using all possible ground term substitutions from the vocabulary of the

knowledge base-in this case, {xl John) and {x/Richard). We obtain

We discard the universally quantified sentence. Now, the knowledge base is essentially propositional if we view

the ground atomic sentences-King (John), Greedy (John), and Brother (Richard, John) as proposition symbols.

Therefore, we can apply any of the complete propositional algorithms to obtain conclusions such as Evil (John).

Disadvantage:

If the knowledge base includes a function symbol, the set of possible ground term substitutions is infinite.

Propositional algorithms will have difficulty with an infinitely large set of sentences.

179

NOTE:

Entailment for first-order logic is semi decidable which means algorithms exist that say yes to every entailed

sentence, but no algorithm exists that also says no to every non entailed sentence

2. Unification and Lifting

Consider the above discussed example, if we add Siblings (Peter, Sharon) to the knowledge base then it will be

Removing Universal Quantifier will add new sentences to the knowledge base which are not necessary for the

query Evil (John)?

Hence we need to teach the computer to make better inferences. For this purpose Inference rules were used.

First Order Inference Rule:

The key advantage of lifted inference rules over propositionalization is that they make only those substitutions

which are required to allow particular inferences to proceed.

Generalized Modus Ponens:

If there is some substitution θ that makes the premise of the implication identical to sentences already in the

knowledge base, then we can assert the conclusion of the implication, after applying θ. This inference process can

be captured as a single inference rule called General ized Modus Ponens which is a lifted version of Modus

Ponens-it raises Modus Ponens from propositional to first-order logic

For atomic sentences pi, pi ', and q, where there is a substitution θ such that SUBST(θ , pi) = SUBST(θ , pi '), for

all i,

p1 ', p2 ', …, pn ', (p1 ∧ p2 ∧ … ∧ pn ⇒ q)

180

SUBST (θ, q)

There are N + 1 premises to this rule, N atomic sentences + one implication.

Applying SUBST (θ, q) yields the conclusion we seek. It is a sound inference rule.

Suppose that instead of knowing Greedy (John) in our example we know that everyone is greedy:

∀y Greedy(y)

We would conclude that Evil(John).

Applying the substitution {x/John, y / John) to the implication premises King (x) and Greedy (x) and the

knowledge base sentences King(John) and Greedy(y) will make them identical. Thus, we can infer the conclusion

of the implication.

 For our example,

Unification:

It is the process used to find substitutions that make different logical expressions look identical. Unification is a

key component of all first-order Inference algorithms.

 UNIFY (p, q) = θ where SUBST (θ, p) = SUBST (θ, q) θ is our unifier value (if one exists).

Ex: “Who does John know?”

UNIFY (Knows (John, x), Knows (John, Jane)) = {x/ Jane}.

UNIFY (Knows (John, x), Knows (y, Bill)) = {x/Bill, y/ John}.

UNIFY (Knows (John, x), Knows (y, Mother(y))) = {x/Bill, y/ John}

UNIFY (Knows (John, x), Knows (x, Elizabeth)) = FAIL

 The last unification fails because both use the same variable, X. X can’t equal both John and Elizabeth. To

avoid this change the variable X to Y (or any other value) in Knows(X, Elizabeth)

Knows(X, Elizabeth) → Knows(Y, Elizabeth)

 Still means the same. This is called standardizing apart.

181

 sometimes it is possible for more than one unifier returned:

UNIFY (Knows (John, x), Knows(y, z)) =???

This can return two possible unifications: {y/ John, x/ z} which means Knows (John, z) OR {y/ John, x/ John, z/

John}. For each unifiable pair of expressions there is a single most general unifier (MGU), In this case it is {y/

John, x/z).

 An algorithm for computing most general unifiers is shown below.

Figure 2.1 The unification algorithm. The algorithm works by comparing the structures of the inputs,

element by element. The substitution 0 that is the argument to UNIFY is built up along the way and is used

to make sure that later comparisons are consistent with bindings that were established earlier. In a

compound expression, such as F (A, B), the function OP picks out the function symbol F and the function

182

ARCS picks out the argument list (A, B).

The process is very simple: recursively explore the two expressions simultaneously "side by side," building up a

unifier along the way, but failing if two corresponding points in the structures do not match. Occur check step

makes sure same variable isn’t used twice.

Storage and retrieval

 STORE(s) stores a sentence s into the knowledge base

 FETCH(s) returns all unifiers such that the query q unifies with some sentence in the knowledge base.

Easy way to implement these functions is Store all sentences in a long list, browse list one sentence at a time with

UNIFY on an ASK query. But this is inefficient.

To make FETCH more efficient by ensuring that unifications are attempted only with sentences that have some

chance of unifying. (i.e. Knows(John, x) vs. Brother(Richard, John) are not compatible for unification)

 To avoid this, a simple scheme called predicate indexing puts all the Knows facts in one bucket and all the

Brother facts in another.

 The buckets can be stored in a hash table for efficient access. Predicate indexing is useful when there are

many predicate symbols but only a few clauses for each symbol.

But if we have many clauses for a given predicate symbol, facts can be stored under multiple index keys.

For the fact Employs (AIMA.org, Richard), the queries are

Employs (A IMA. org, Richard) Does AIMA.org employ Richard?

Employs (x, Richard) who employs Richard?

Employs (AIMA.org, y) whom does AIMA.org employ?

Employs Y(x), who employs whom?

We can arrange this into a subsumption lattice, as shown below.

Figure 2.2 (a) The subsumption lattice whose lowest node is the sentence Employs (AIMA.org, Richard).

(b) The subsumption lattice for the sentence Employs (John, John).

183

A subsumption lattice has the following properties:

 child of any node obtained from its parents by one substitution

 the “highest” common descendant of any two nodes is the result of applying their most general unifier

 predicate with n arguments contains O(2n) nodes (in our example, we have two arguments, so our lattice

has four nodes)

 Repeated constants = slightly different lattice.

3. Forward Chaining

First-Order Definite Clauses:

A definite clause either is atomic or is an implication whose antecedent is a conjunction of positive literals and

whose consequent is a single positive literal. The following are first-order definite clauses:

Unlike propositional literals, first-order literals can include variables, in which case those variables are assumed to

be universally quantified.

Consider the following problem;

“The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an

enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.”

We will represent the facts as first-order definite clauses

". . . It is a crime for an American to sell weapons to hostile nations":

--------- (1)

"Nono . . . has some missiles." The sentence 3 x Owns (Nono, .rc) A Missile (x) is transformed into two definite

clauses by Existential Elimination, introducing a new constant M1:

Owns (Nono, M1) ----------------- (2)

Missile (Ml) ------------------------- (3)

"All of its missiles were sold to it by Colonel West":

Missile (x) A Owns (Nono, x) =>Sells (West, z, Nono) ----------------- (4)

We will also need to know that missiles are weapons:

 Missile (x) => Weapon (x) ---------- (5)

184

We must know that an enemy of America counts as "hostile":

Enemy (x, America) =>Hostile(x) ----------- (6)

"West, who is American":

American (West) --------------- (7)

"The country Nono, an enemy of America ":

 Enemy (Nono, America) ------------ (8)

A simple forward-chaining algorithm:

 Starting from the known facts, it triggers all the rules whose premises are satisfied, adding their

conclusions lo the known facts

 The process repeats until the query is answered or no new facts are added. Notice that a fact is not "new" if

it is just renaming of a known fact.

We will use our crime problem to illustrate how FOL-FC-ASK works. The implication sentences are (1), (4), (5),

and (6). Two iterations are required:

 On the first iteration, rule (1) has unsatisfied premises.

 Rule (4) is satisfied with {x/Ml), and Sells (West, M1, Nono) is added.

 Rule (5) is satisfied with {x/M1) and Weapon (M1) is added.

 Rule (6) is satisfied with {x/Nono}, and Hostile (Nono) is added.

 On the second iteration, rule (1) is satisfied with {x/West, Y/MI, z /Nono), and Criminal (West) is added.

It is sound, because every inference is just an application of Generalized Modus Ponens, it is complete for definite

clause knowledge bases; that is, it answers every query whose answers are entailed by any knowledge base of

definite clauses

185

Figure 3.1 A conceptually straightforward, but very inefficient, forward-chaining

algorithm. On each iteration, it adds to KB all the atomic sentences that can be inferred

in one step from the implication sentences and the atomic sentences already in KB.

Figure 3.2 The proof tree generated by forward chaining on the crime example. The initial

facts appear at the bottom level, facts inferred on the first iteration in the middle level, and

facts inferred on the second iteration at the top level.

Efficient forward chaining:

The above given forward chaining algorithm was lack with efficiency due to the the three sources of complexities:

 Pattern Matching

 Rechecking of every rule on every iteration even a few additions are made to rules

 Irrelevant facts

186

1. Matching rules against known facts:

For example, consider this rule,

Missile(x) A Owns (Nono, x) => Sells (West, x, Nono).

The algorithm will check all the objects owned by Nono in and then for each object, it could check whether it is a

missile. This is the conjunct ordering problem:

“Find an ordering to solve the conjuncts of the rule premise so that the total cost is minimized”. The most

constrained variable heuristic used for CSPs would suggest ordering the conjuncts to look for missiles first if

there are fewer missiles than objects that are owned by Nono.

The connection between pattern matching and constraint satisfaction is actually very close. We can view each

conjunct as a constraint on the variables that it contains-for example, Missile(x) is a unary constraint on x.

Extending this idea, we can express every finite-domain CSP as a single definite clause together with some

associated ground facts. Matching a definite clause against a set of facts is NP-hard

2. Incremental forward chaining:

On the second iteration, the rule Missile (x) => Weapon (x)

Matches against Missile (M1) (again), and of course the conclusion Weapon(x/M1) is already known so nothing

happens. Such redundant rule matching can be avoided if we make the following observation:

“Every new fact inferred on iteration t must be derived from at least one new fact inferred on iteration t – 1”.

This observation leads naturally to an incremental forward chaining algorithm where, at iteration t, we check a rule

only if its premise includes a conjunct p, that unifies with a fact p: newly inferred at iteration t - 1. The rule

matching step then fixes p, to match with p’, but allows the other conjuncts of the rule to match with facts from

any previous iteration.

3. Irrelevant facts:

 One way to avoid drawing irrelevant conclusions is to use backward chaining.

 Another solution is to restrict forward chaining to a selected subset of rules

 A third approach, is to rewrite the rule set, using information from the goal.so that only relevant variable

bindings-those belonging to a so-called magic set-are considered during forward inference.

 For example, if the goal is Criminal (West), the rule that concludes Criminal (x) will be rewritten to include an

extra conjunct that constrains the value of x:

187

Magic(x) A American(z) A Weapon(y)A Sells(x, y, z) A Hostile(z) =>Criminal(x)

The fact Magic (West) is also added to the KB. In this way, even if the knowledge base contains facts about

millions of Americans, only Colonel West will be considered during the forward inference process.

4. Backward Chaining

This algorithm work backward from the goal, chaining through rules to find known facts that support the proof. It

is called with a list of goals containing the original query, and returns the set of all substitutions satisfying the

query. The algorithm takes the first goal in the list and finds every clause in the knowledge base whose head,

unifies with the goal. Each such clause creates a new recursive call in which body, of the clause is added to the

goal stack .Remember that facts are clauses with a head but no body, so when a goal unifies with a known fact, no

new sub goals are added to the stack and the goal is solved. The algorithm for backward chaining and proof tree

for finding criminal (West) using backward chaining are given below.

Figure 4.1 A simple backward-chaining algorithm.

.

188

Figure 4.2 Proof tree constructed by backward chaining to prove that West is a criminal. The tree should

be read depth first, left to right. To prove Criminal (West), we have to prove the four conjuncts below it.

Some of these are in the knowledge base, and others require further backward chaining. Bindings for each

successful unification are shown next to the corresponding sub goal. Note that once one sub goal in a

conjunction succeeds, its substitution is applied to subsequent sub goals.

189

UNIT III

Knowledge Representation Issues

Background Knowledge and Observations

An observation is a piece of information received online from users, sensors, or other knowledge sources. For this

chapter, we assume an observation is an atomic proposition. Observations are implicitly conjoined, so a set of

observations is a conjunction of atoms. Neither users nor sensors provide rules directly from observing the world.

The background knowledge allows the agent to do something useful with these observations.

In many reasoning frameworks, the observations are added to the background knowledge. But in other reasoning

frameworks (e.g, in abduction, probabilistic reasoning, and learning), observations are treated separately from

background knowledge. Users cannot be expected to tell us everything that is true. First, they do not know what is

relevant, and second, they do not know what vocabulary to use. An ontology that specifies the meaning of the

symbols, and a graphical user interface to allow the user to click on what is true, may help to solve the vocabulary

problem. However, many problems are too big; what is relevant depends on other things that are true, and there are

too many possibly relevant truths to expect the user to specify everything that is true, even with a sophisticated

graphical user interface.

Similarly, passive sensors are able to provide direct observations of conjunctions of atomic propositions, but active

sensors may have to be queried by the agent for the information that is necessary for a task.

Querying the User

At design time or offline, there is typically no information about particular cases. This information

arrives online from users, sensors, and external knowledge sources. For example, a medical-diagnosis program

may have knowledge represented as definite clauses about the possible diseases and symptoms but it would not

have knowledge about the actual symptoms manifested by a particular patient. You would not expect that the user

would want to, or even be able to, volunteer all of the information about a particular case because often the user

does not know what information is relevant or know the syntax of the representation language. The user would

prefer to answer explicit questions put to them in a more natural language. The idea of querying the user is that

the system can treat the user as a source of information and ask the user specific questions about a particular case.

The proof procedure can determine what information is relevant and will help to prove a query.

The simplest way to get information from a user is to incorporate an ask-the-user mechanism into the top-down

proof procedure. In such a mechanism, an atom is askable if the user would know the truth value at run time. The

top-down proof procedure, when it has selected an atom to prove, either can use a clause in the knowledge base to

prove it, or, if the atom is askable, can ask the user whether or not the atom is true. The user is thus only asked

about atoms that are relevant for the query. There are three classes of atoms that can be selected:

 atoms for which the user is not expected to know the answer, so the system never asks.

 askable atoms for which the user has not already provided an answer. In this case, the user should be

asked for the answer, and the answer should be recorded.

 askable atoms for which the user has already provided an answer. In this case, that answer should be

used, and the user should not be asked again about this atom.

A bottom-up proof procedure can also be adapted to ask a user, but it should avoid asking about all askable atoms;

see Exercise 5.5.

It is important to note that a symmetry exists between roles of the user and roles of the system. They can both ask

questions and give answers. At the top level, the user asks the system a question, and at each step the system asks a

question, which is answered either by finding the relevant definite clauses or by asking the user. The whole system

can be characterized by a protocol of questions and answers.

https://artint.info/html/ArtInt_11.html#obs-defn
https://artint.info/html/ArtInt_42.html#user
https://artint.info/html/ArtInt_41.html#ontology-defn
https://artint.info/html/ArtInt_42.html#sensors
https://artint.info/html/ArtInt_42.html
https://artint.info/html/ArtInt_110.html
https://artint.info/html/ArtInt_110.html
https://artint.info/html/ArtInt_137.html#bu-ask-user-exer
https://artint.info/html/ArtInt_137.html#bu-ask-user-exer

190

Example 5.10: In the electrical domain of Example 5.5, one would not expect the designer of the house to know

the switch positions or expect the user to know which switches are connected to which wires. It is reasonable that

all of the definite clauses of Example 5.5, except for the switch positions, should be given by the designer. The

switch positions can then be made askable.

Here is a possible dialog, where the user asks a query and answers yes or no. The user interface here is minimal to

show the basic idea; a real system would use a more sophisticated user-friendly interface.

ailog: ask lit_l1.

Is up_s1 true? [yes,no,unknown,why,help]: no.

Is down_s1 true? [yes,no,unknown,why,help]: yes.

Is down_s2 true? [yes,no,unknown,why,help]: yes.

Answer: lit_l1.

The system only asks the user questions that the user is able to answer and that are relevant to the task at hand.

Instead of answering questions, it is sometimes preferable for a user to be able to specify if there is something

strange or unusual going on. For example, a patient may not be able to specify everything that is true about them

but can specify what is unusual. For example, a patient may come in and say that their left knee hurts; it is

unreasonable to expect them to volunteer that their left elbow doesn't hurt and, similarly, for every other part that

does not hurt. It may be possible for a sensor to specify that something has changed in a scene, even though it may

not be able to recognize what is in a scene.

Given that a user specified everything that is exceptional, an agent can often infer something from the lack of

knowledge. The normality will be a default that can be overridden with exceptional information.

Knowledge-Level Explanation

The explicit use of semantics allows explanation and debugging at the knowledge level. To make a system usable

by people, the system cannot just give an answer and expect the user to believe it. Consider the case of a system

advising doctors who are legally responsible for the treatment that they carry out based on the diagnosis. The

doctors must be convinced that the diagnosis is appropriate. The system must be able to justify that its answer is

correct. The same features are used to explain how the system found a result and to debug the knowledge base.

Three complementary means of interrogation are used to explain the relevant knowledge: (1) a how

question is used to explain how an answer was derived, (2) a why question is used to ask the system why it is

asking the user a question, and (3) a whynot question is used to ask why an atom was not able to be proved.

To explain how an answer was derived, a "how" question can be asked by a user when the system has returned the

answer. The system provides the definite clause used to deduce the answer. For any atom in the body of the

definite clause, the user can ask how the system derived that atom.

The user can ask "why" in response to being asked a question. The system replies by giving the rule that produced

the question. The user can then ask why the head of that rule was being proved. Together these rules allow the user

to traverse a proof or a partial proof of the top-level query.

A "whynot" question can be used to ask why a particular atom was not able to be proved.

 5.3.3.1 How Did the System Prove a Goal?

 5.3.3.2 Why Did the System Ask a Question?

https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_10.html#knowledge-level
https://artint.info/html/ArtInt_115.html
https://artint.info/html/ArtInt_116.html

191

How Did the System Prove a Goal?

The first explanation procedure allows the user to ask "how" a goal was derived. If there is a proof for g,

either g must be an atomic clause or there must be a rule

g←a1∧...∧ak.

such that a proof exists for each ai.

If the system has derived g, and the user asks how in response, the system can display the clause that was used to

prove g. If this clause was a rule, the user can then ask

how i.

which will give the rule that was used to prove ai. The user can continue using the how command to explore

how g was derived.

Example 5.11: In the axiomatization of Example 5.5, the user can ask the query ask lit_l2. In response to the

system proving this query, the user can ask how. The system would reply:

lit_l2 ←

 light_l2 ∧

 live_l2 ∧

 ok_l2.

This is the top-level rule used to prove lit_l2. To find out how live_l2 was proved, the user can ask

how 2.

The system can return the rule used to prove live_l2, namely,

live_l2←

 live_w4.

To find how live_w4 was proved, the user can ask

how 1.

The system presents the rule

live_w4 ←

 live_w3 ∧

 up_s3.

To find how first atom in the body was proved, the user can ask

how 1.

The first atom, live_w3, was proved using the following rule:

live_w3 ←

 live_w5 ∧

 ok_cb1.

To find how the second atom in the body was proved, the user can ask

how 2.

The system will report that ok_cb1 is explicitly given.

Notice that the explanation here was only in terms of the knowledge level, and it only gave the relevant definite

clauses it has been told. The user does not have to know anything about the proof procedure or the actual

computation.

https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_106.html#powerl-ex1

192

Why Did the System Ask a Question?

Another useful explanation is for why a question was asked. This is useful because

 We want the system to appear intelligent. Knowing why a question was asked will increase a user's

confidence that the system is working sensibly.

 One of the main measures of complexity of an interactive system is the number of questions asked of a

user; you want to keep this to a minimum. Knowing why a question was asked will help the knowledge

designer reduce this complexity.

 An irrelevant question is usually a symptom of a deeper problem.

 The user may learn something from the system by knowing why the system is doing something. This

learning is much like an apprentice asking a master why the master is doing something.

When the system asks the user a question (q), there must be a rule used by the system that contains q in the body.

The user can ask

why.

This is read as "Why did you ask me that question?" The answer can be simply the rule that contains q in the body.

If the user asks why again, the system should explain why the goal at the head of the rule was asked, and so forth.

Repeatedly asking why will eventually give the path of goals to the top-level query. If all of these rules are

reasonable, this justifies why the system's question to the user is reasonable.

Example 5.12: Consider the dialog of Example 5.10. The following shows how repeated use of why can

repeatedly find higher-level goals. The following dialog is for the query ask lit_l1, with user asking the initial

query, and responding with "why":

ailog: ask lit_l1.

Is up_s1 true? why.

up_s1 is used in the rule live_w1 ←live_w3 ∧up_s1: why.

live_w1 is used in the rule live_w0 ←live_w1 ∧up_s2: why.

live_w0 is used in the rule live_l1 ←live_w0: why.

live_l1 is used in the rule lit_l1 ←light_l1 ∧live_l1 ∧ok_l1: why.

Because that is what you asked me!

Typically, how and why are used together; how moves from higher-level to lower-level goals, and why moves

from lower-level to higher-level goals. Together they let the user traverse a proof tree, where nodes are atoms,

and a node together with its children corresponds to a clause in the knowledge base.

Example 5.13: As an example of the need to combine how and why, consider the previous example where the user

asked why up_s1. The system gave the following rule:

live_w1 ←live_w3 ∧up_s1.

This means that up_s1 was asked because the system wants to know live_w1 and is using this rule to try to

prove up_s1. The user may think it is reasonable that the system wants to know live_w1 but may think it is

inappropriate that up_s1 be asked because the user may doubt that live_w3 should have succeeded. In this case it is

useful for the user to ask how live_w3 was derived.

Knowledge-Level Debugging

Just as in other software, there can be errors and omissions in knowledge bases. Domain experts and knowledge

engineers must be able to debug a knowledge base and add knowledge. In knowledge-based systems, debugging is

https://artint.info/html/ArtInt_113.html#ask-user-ex
https://artint.info/html/ArtInt_113.html#ask-user-ex

193

difficult because the domain experts and users who have the domain knowledge required to detect a bug do not

necessarily know anything about the internal working of the system, nor do they want to. Standard debugging

tools, such as providing traces of the execution, are useless because they require a knowledge of the mechanism by

which the answer was produced. In this section, we show how the idea of semantics can be exploited to provide

powerful debugging facilities for knowledge-based systems. Whoever is debugging the system is required only to

know the meaning of the symbols and whether specific atoms are true or not. This is the kind of knowledge that a

domain expert and a user may have.

Knowledge-level debugging is the act of finding errors in knowledge bases with reference only to what the

symbols mean. One of the goals of building knowledge-based systems that are usable by a range of domain experts

is that a discussion about the correctness of a knowledge base should be a discussion about the knowledge domain.

For example, debugging a medical knowledge base should be a question of medicine that medical experts, who are

not experts in AI, can answer. Similarly, debugging a knowledge base about house wiring should be with reference

to the particular house, not about the internals of the system reasoning with the knowledge base.

Four types of non-syntactic errors can arise in rule-based systems:

 An incorrect answer is produced; that is, some atom that is false in the intended interpretation was

derived.

 Some answer was not produced; that is, the proof failed when it should have succeeded (some

particular true atom was not derived).

 The program gets into an infinite loop.

 The system asks irrelevant questions.

Ways to debug the first three types of error are examined below. Irrelevant questions can be investigated using

the why questions as described earlier.

 5.3.4.1 Incorrect Answers

 5.3.4.2 Missing Answers

 5.3.4.3 Infinite Loops

Incorrect Answers

An incorrect answer is an answer that has been proved yet is false in the intended interpretation. It is also called

a false-positive error. An incorrect answer can only be produced by a sound proof procedure if an incorrect

definite clause was used in the proof.

Assume that whoever is debugging the knowledge base, such as a domain expert or a user, knows the intended

interpretation of the symbols of the language and can determine whether a particular proposition is true or false in

the intended interpretation. The person does not have to know how the answer was derived. To debug an incorrect

answer, a domain expert needs only to answer yes-or-no questions.

Suppose there is an atom g that was proved yet is false in the intended interpretation. Then there must be a

rule g←a1∧...∧ak in the knowledge base that was used to prove g. Either

 one of the ai is false in the intended interpretation, in which case it can be debugged in the same way, or

 all of the ai are true in the intended interpretation. In this case, the definite clause g←a1∧...∧ak must be

incorrect.

This leads to an algorithm, presented in Figure 5.6, to debug a knowledge base when an atom that is false in the

intended interpretation is derived.

1: Procedure Debug(g,KB)

2: Inputs

3: KB a knowledge base

4: g an atom: KB g and g is false in intended interpretation

https://artint.info/html/ArtInt_103.html
https://artint.info/html/ArtInt_118.html
https://artint.info/html/ArtInt_119.html
https://artint.info/html/ArtInt_120.html
https://artint.info/html/ArtInt_118.html#alg-debug-incorr
https://artint.info/html/ArtInt_118.html#alg-debug-incorr

194

5: Output

6: clause in KB that is false

7: Find definite clause g←a1∧...∧ak∈KB used to prove g

8: for each ai do

9: ask user whether ai is true

10: if (user specifies ai is false) then

11: return Debug(ai,KB)

12:

13:

14: return g←a1∧...∧ak

Figure 5.6: An algorithm to debug incorrect answers

This only requires the person debugging the knowledge base to be able to answer yes-or-no questions.

This procedure can also be carried out by the use of the how command. Given a proof for g that is false in the

intended interpretation, a user can ask how that atom was proved. This will return the definite clause that was used

in the proof. If the clause was a rule, the user could use how to ask about an atom in the body that was false in the

intended interpretation. This will return the rule that was used to prove that atom. The user can repeat this until a

definite clause is found where all of the elements of the body are true (or there are no elements in the body). This

is the incorrect definite clause. The method of debugging assumes that the user can determine whether an atom is

true or false in the intended interpretation. The user does not have to know the proof procedure used.

Example 5.14: Consider Example 5.5, involving the electrical domain, but assume there is a bug in the program.

Suppose that the domain expert or user had inadvertently said that whether w1 is connected to w3 depends on the

status of s3 instead of s1 (see Figure 1.8). Thus, the knowledge includes the following incorrect rule:

live_w1 ←live_w3 ∧up_s3.

All of the other axioms are the same as in Example 5.5. Given this axiom set, the atom lit_l1 can be derived, which

is false in the intended interpretation. Consider how a user would go about finding this incorrect definite clause

when they detected this incorrect answer.

Given that lit_l1 is false in the intended interpretation, they ask how it was derived, which will give the following

rule:

lit_l1 ←light_l1 ∧live_l1 ∧ok_l1.

They check the atoms in the body of this rule. light_l1 and ok_l1 are true in the intended interpretation,

but live_l1 is false in the intended interpretation. So they ask

how 2.

The system presents the rule

live_l1 ←live_w0.

live_w0 is false in the intended interpretation, so they ask

how 1.

The system presents the rule

live_w0 ←live_w1 ∧up_s2.

live_w1 is false in the intended interpretation, so they ask

https://artint.info/html/ArtInt_115.html
https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_26.html#power
https://artint.info/html/ArtInt_26.html#power
https://artint.info/html/ArtInt_106.html#powerl-ex1

195

how 1.

The system presents the rule

live_w1 ←live_w3 ∧up_s3.

Both elements of the body are true in the intended interpretation, so this is the buggy rule.

The user or domain expert can find the buggy definite clause without having to know the internal workings of the

system or how the proof was found. They only require knowledge about the intended interpretation and the

disciplined use of how.

Missing Answers

The second type of error occurs when an expected answer is not produced. This manifests itself by a failure when

an answer is expected. A goal g that is true in the domain, but is not a consequence of the knowledge base, is

called a false-negative error.

The preceding algorithm does not work in this case. There is no proof. We must look for why there is no proof

for g.

An appropriate answer is not produced only if a definite clause or clauses are missing from the knowledge base.

By knowing the intended interpretation of the symbols and by knowing what queries should succeed (i.e, what is

true in the intended interpretation), a domain expert can debug a missing answer. Given an atom that failed when it

should have succeeded, Figure 5.7 shows how to find an atom for which there is a missing definite clause.

1: Procedure DebugMissing(g,KB)

2: Inputs

3: KB a knowledge base

4: g an atom: KB⊬ g and g is true in the intended interpretation

5: Output

6: atom for which there is a clause missing

7: if (there is a definite clause g←a1∧...∧ak∈KB such that all ai are true in the intended interpretation) then

8: select ai that cannot be proved

9: DebugMissing(ai,KB)

10: else

11: return g

Figure 5.7: An algorithm for debugging missing answers

Suppose g is an atom that should have a proof, but which fails. Because the proof for g fails, the bodies of all of

the definite clauses with g in the head fail.

 Suppose one of these definite clauses for g should have resulted in a proof; this means all of the atoms

in the body must be true in the intended interpretation. Because the body failed, there must be an atom in the

body that fails. This atom is then true in the intended interpretation, but fails. So we can recursively debug it.

 Otherwise, there is no definite clause applicable to proving g, so the user must add a definite clause

for g.

Example 5.15: Suppose that, for the axiomatization of the electrical domain in Example 5.5, the world

of Figure 1.8 actually had s2 down. Thus, it is missing the definite clause specifying that s2 is down. The

axiomatization of Example 5.5 fails to prove lit_l1 when it should succeed. Let's find the bug.

https://artint.info/html/ArtInt_119.html#alg-debug-failure
https://artint.info/html/ArtInt_119.html#alg-debug-failure
https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_106.html#powerl-ex1
https://artint.info/html/ArtInt_26.html#power
https://artint.info/html/ArtInt_26.html#power
https://artint.info/html/ArtInt_106.html#powerl-ex1

196

lit_l1 failed, so we find all of the rules with lit_l1 in the head. There is one such rule:

lit_l1 ←light_l1 ∧live_l1 ∧ok_l1.

The user can then verify that all of the elements of the body are true. light_l1 and ok_l1 can both be derived,

but live_l1 fails, so we debug this atom. There is one rule with live_l1 in the head:

live_l1 ←live_w0.

The atom live_w0 cannot be proved, but the user verifies that it is true in the intended interpretation. So we find the

rules for live_w0:

live_w0 ←live_w1 ∧up_s2.

live_w_0 ←live_w_2 ∧down_s_2.

The user can say that the body of the second rule is true. A proof exists for live_w2, but there are no definite

clauses for down_s2, so this atom is returned. The correction is to add the appropriate atomic clause or rule for it.

Infinite Loops

There is an infinite loop in the top-down derivation if there is an atom a that is being proved as a subgoal of a.

(Here we assume that being a subgoal is transitive; a subgoal of a subgoal is a subgoal). Thus, there can be an

infinite loop only if the knowledge base is cyclic. A knowledge base is cyclic if there is an atom a such that there

is a sequence of definite clauses of the form

a ←...a1 ...

a1 ←...a2 ...

...

an ←...a ...

(where if n=0 there is a single definite clause with a in the head and body).

A knowledge base is acyclic if there is an assignment of natural numbers (non-negative integers) to the atoms so

that the atoms in the body of a definite clause are assigned a lower number than the atom in the head. All of the

knowledge bases given previously in this chapter are acyclic. There cannot be an infinite loop in an acyclic

knowledge base.

To detect a cyclic knowledge base, the top-down proof procedure can be modified to maintain the set of

all ancestors for each atom in the proof. In the procedure in Figure 5.4, the set A can contain pairs of an atom and

its set of ancestors.

Initially the set of ancestors of each atom is empty. When the rule

a←a1∧...∧ak

is used to prove a, the ancestors of ai will be the ancestors of a together with a. That is,

ancestors(ai)= ancestors(a) ∪{a}.

The proof can fail if an atom is in its set of ancestors. This failure only occurs if the knowledge base is cyclic. Note

that this is a more refined version of cycle checking, where each atom has its own set of ancestors.

A cyclic knowledge base is often a sign of a bug. When writing a knowledge base, it is often useful to ensure an

acyclic knowledge base by identifying a value that is being reduced at each iteration. For example, in the electrical

domain, the number of steps away from the outside of the house is meant to be reduced by one each time through

the loop. Disciplined and explicit use of a well-founded ordering can be used to prevent infinite loops in the same

way that programs in traditional languages must be carefully programmed to prevent infinite looping.

Note that the bottom-up proof procedure does not get into an infinite loop, because it selects a rule only when the

head has not been derived.

https://artint.info/html/ArtInt_110.html#hcint
https://artint.info/html/ArtInt_110.html#hcint
https://artint.info/html/ArtInt_60.html

197

Other Knowledge Representation Schemes:

Over the past 40 years, numerous representational scheme have been proposed and implemented, each of them

having its own strength and weakness.

According to Mylopoulos and Levesque (1984) they have been classified into four categories:

1. Logical Representation Scheme:

This class of representation uses expressions in formal logic to represent a knowledge base. Inference rules and

proof procedures apply this knowledge to problem solving. First order predicate calculus is the most widely used

logical representation scheme, and PROLOG is an ideal programming language for implementing logical

representation schemes.

2. Procedural Representation Scheme:

Procedural scheme represents knowledge as a set of instructions for solving a problem. In a rule-based system, for

example, an if then rule may be interpreted as a procedure for searching a goal in a problem domain: to arrive at

the conclusion, solve the premises in order. Production systems are examples of a procedural representation

scheme.

3. Network Representation Scheme:

Network representation captures knowledge as a graph in which the nodes represent objects or concepts in the

problem domain and the arcs represent relations or associations between them. Examples of network

representations include semantic network, conceptual dependencies and conceptual graphs.

4. Structured Representation Scheme:

Structured representation languages extend networks by allowing each node to be a complex data structure

consisting of named slots with attached values. These values may be simple numeric or complex data, such as

pointers to other frames, or even procedures.

 Non-monotonic Reasoning

The definite clause logic is monotonic in the sense that anything that could be concluded before a clause is added

can still be concluded after it is added; adding knowledge does not reduce the set of propositions that can be

derived.

A logic is non-monotonic if some conclusions can be invalidated by adding more knowledge. The logic of

definite clauses with negation as failure is non-monotonic. Non-monotonic reasoning is useful for representing

defaults. A default is a rule that can be used unless it overridden by an exception.

For example, to say that b is normally true if c is true, a knowledge base designer can write a rule of the form

b ←c ∧ ∼ aba.

198

where aba is an atom that means abnormal with respect to some aspect a. Given c, the agent can infer b unless it is

told aba. Adding aba to the knowledge base can prevent the conclusion of b. Rules that imply aba can be used to

prevent the default under the conditions of the body of the rule.

Example 5.27: Suppose the purchasing agent is investigating purchasing holidays. A resort may be adjacent to a

beach or away from a beach. This is not symmetric; if the resort was adjacent to a beach, the knowledge provider

would specify this. Thus, it is reasonable to have the clause

away_from_beach ← ∼ on_beach.

This clause enables an agent to infer that a resort is away from the beach if the agent is not told it is adjacent to a

beach.

A cooperative system tries to not mislead. If we are told the resort is on the beach, we would expect that resort

users would have access to the beach. If they have access to a beach, we would expect them to be able to swim at

the beach. Thus, we would expect the following defaults:

beach_access ←on_beach ∧ ∼ abbeach_access.

swim_at_beach ←beach_access ∧ ∼ abswim_at_beach.

A cooperative system would tell us if a resort on the beach has no beach access or if there is no swimming. We

could also specify that, if there is an enclosed bay and a big city, then there is no swimming, by default:

abswim_at_beach ←enclosed_bay ∧big_city ∧ ∼ abno_swimming_near_city.

We could say that British Columbia is abnormal with respect to swimming near cities:

abno_swimming_near_city ←in_BC ∧ ∼ abBC_beaches.

Given only the preceding rules, an agent infers away_from_beach. If it is then told on_beach, it can no longer

infer away_from_beach, but it can now infer beach_access and swim_at_beach. If it is also

told enclosed_bay and big_city, it can no longer infer swim_at_beach. However, if it is then told in_BC, it can then

infer swim_at_beach.

By having defaults of what is normal, a user can interact with the system by telling it what is abnormal, which

allows for economy in communication. The user does not have to state the obvious.

One way to think about non-monotonic reasoning is in terms of arguments. The rules can be used as components

of arguments, in which the negated abnormality gives a way to undermine arguments. Note that, in the language

presented, only positive arguments exist that can be undermined. In more general theories, there can be positive

and negative arguments that attack each other.

1. Acting Under Uncertainty

When an agent knows enough facts about its environment, the logical approach enables it to derive plans that are

guaranteed to work. But unfortunately, agents never have access to the whole truth about their environment. This

is called uncertainty.

 For example, an agent in the wumpus world consists of sensors that report only local information; most of

the world is not immediately observable. A wumpus agent often will find itself unable to discover which

of two squares contains a pit. If those squares are en route to the gold, then the agent might have to take a

chance and enter one of the two squares.

199

 The real world is far more complex than the wumpus world. For a logical agent, it might be impossible to

construct a complete and correct description of how its actions will work.

 Suppose, for example, that the agent wants to drive someone to the airport to catch a flight and is

considering a plan, A90, that involves leaving home 90 minutes before the flight departs and driving at a

reasonable speed. Even though the airport is only about 15 miles away, the agent will not be able to

conclude with certainty that "Plan Ago will get us to the airport in time." Instead, it reaches the weaker

conclusion "Plan Ago will get us to the airport in time, as long as my car doesn't break down or run out of

gas, and I don't get into an accident, and there are no accidents on the bridge, and the plane doesn't leave

early and" None of these conditions can be deduced, so the plan's success cannot be inferred.

 The information that the agent has cannot guarantee any of these outcomes for A90, but it can provide

some degree of belief that they will be achieved.

 Other plans, such as A120, might increase the agent's belief that it will get to the airport on time, but also

increase the likelihood of a long wait. “The right thing to do-the rational decision—therefore depends on

both the relative importance of various goals and the likelihood that, and degree to which, they will be

achieved”.

1.1 Handling uncertain knowledge

Here we consider the nature of uncertain knowledge; Let us see a simple-diagnosis example to illustrate the

concepts involved. “Diagnosis for medicine”. So write rules for dental diagnosis using first-order logic.

The problem is that this rule is wrong. Not all patients with toothaches have cavities; some of them have gum

disease, an abscess, or one of several other problems:

In order to make the rule true, we have to add an almost unlimited list of possible causes. We could try turning the

rule into a causal rule:

But this rule is not right either; not all cavities cause pain. The only way to fix the rule is to make it logically

exhaustive: i.e., the left-hand side with all the qualifications required for a cavity to cause a toothache. Trying to

use first-order logic to cope with a domain like medical diagnosis thus fails for three main reasons:

200

Laziness: It is too much work to list the complete set of antecedents or consequents needed to ensure an exception

less rule and too hard to use such rules.

Theoretical ignorance: Medical science has no complete theory for the domain.

Practical ignorance: Even if we know all the rules, we might be uncertain about a particular patient because not

all the necessary tests have been or can be run.

 The connection between toothaches and cavities is just not a logical consequence in either direction. This is

typical of the medical domain, as well as most other judgmental domains: law, business, design,

automobile repair, gardening, and so on.

 The agent's knowledge DEGREE OF BELIEF can at best provide only a degree of belief in the relevant

sentences. Our main tool for dealing PROBABILITY THEORY with degrees of belief will be probability

theory; it assigns to each sentence a numerical degree of belief between 0 and 1.

“Probability provides a way of summarizing the uncertainty that comes from our laziness and ignorance”

 This belief could be derived from statistical data-80% of the toothache patients seen so far have had

cavities. The 80% summarizes those cases in which all the factors needed for a cavity to cause a toothache

are present and other cases in which the patient has both toothache and cavity but the two are unconnected.

 The missing 20% summarizes all the other possible causes of toothache that we are too lazy or ignorant to

confirm or deny.

 The sentence is false, while assigning a probability of 1 corresponds to an unequivocal belief that the

sentence is true. Probabilities between 0 and 1 correspond to intermediate degrees of belief in the truth of

the sentence.

 Thus, probability theory makes the same ontological commitment as logic namely; the facts either do or do

not hold in the world. Degree of truth, as opposed to degree of belief, is the subject of fuzzy logic.

Evidence: In logic, a sentence such as "The patient has a cavity" is true or false depending on the interpretation

and the world; it is true just when the fact it refers to is the case. In probability theory, a sentence such as "The

probability that the patient has a cavity is 0.8" is about the agent's beliefs, not directly about the world. These

beliefs depend on the percepts that the agent has received to date. These percepts constitute the evidence on

which probability assertions are based.

 Before the evidence is obtained, we talk about prior or unconditional probability; after the evidence is

obtained, we talk about posterior or conditional probability.

1.2 Uncertainty and Rational decisions:

201

To make choices among alternatives, an agent must first have preferences between the different possible

outcomes of the various plans. A particular outcome is a completely specified state, including such factors as

whether the agent arrives on time and the length of the wait at the airport. We will be using utility theory to

represent and reason with preferences. Utility theory says that every state has a degree of usefulness, or utility, to

an agent and that the agent will prefer states .with higher utility.

The utility of a state is relative to the agent whose preferences the utility function is supposed to represent. For

example, the utility of a state in which White has won a game of chess is obviously high for the agent playing

White, but low for the agent p1aying Black.

So, Preferences, as expressed by utilities, are combined with probabilities in the general theory of ra.tiona1

decisions called decision theory:

Decision theory = probability theory + utility theory

The fundamental idea of decision theory is that an agent is rational if and only if it chooses the action that yields

the highest expected utility, averaged over all the possible outcomes of the action. This is called the principle of

Maximum Expected Utility (MEU).

1.3 Design for a decision-theoretic agent:

Figure 1.3.1 sketches the structure of an agent that uses decision theory to select actions. The agent is identical, at

an abstract level, to the logical agent. The primary difference is that the decision-theoretic agent's knowledge of

the current state is uncertain; the agent's belief state is a representation of the probabilities of all possible actual

states of the world.

As time passes, the agent accumulates more evidence and its belief state changes.

Given the belief state, the agent can make probabilistic predictions of action outcomes and hence select the action

with highest expected utility.

202

Figure 1.3.1 A decision-theoretic agent that selects rational actions.

2. Basic Probability Notation

Any notation for describing degrees of belief must be able to deal with two main issues:

1) The nature of the sentences to which degrees of belief are assigned

2) The dependence of the degree of belief on the agent's experience.

Propositions:

Probability theory typically uses a language that is slightly more expressive than propositional logic. The basic

element of the language is the random variable, which can be thought of as referring to a "part" of the world

whose "status" is initially unknown.

 For example, Cavity might refer to whether my lower left wisdom tooth has a cavity. Random variables

play a role similar to that of CSP variables in constraint satisfaction problems and that of proposition

symbols in propositional logic. We will always capitalize the names of random variables. For example:

P(a) = 1 - P(⌐a)).

 Each random variable has a domain of values that it can take on. For example, the domain of Cavity might

be (true, fail).

 For example, Cavity = true might represent the proposition that I do in fact have a cavity in my lower left

wisdom tooth.

As with CSP variables, random variables are typically divided into three kinds, depending on the type of the

domain:

 Boolean random variables, such as Cavity, have the domain (true, false). We will often abbreviate a

proposition such as Cavity = true simply by the lowercase name cavity. Similarly, Cavity = false would be

abbreviated by 1 cavity.

203

 Discrete random variables, which include Boolean random variables as a special case, take on values from

a countable domain. For example, the domain of Weather might be (sunny, rainy, cloudy, snow). The

values in the domain must be mutually exclusive and exhaustive. Where no confusion arises, we: will use,

for example, snow as an abbreviation for Weather = snow.

 Continuous random variables take on values from the: real numbers. The domain can be either the entire

real line or some subset such as the interval [0, 1]. For example, the proposition X = 4.02 asserts that the

random variable .X has the exact value 4.02.

Elementary propositions, such as Cavity = true and Toothache =false, can be combined to form complex

propositions using all the standard logical connectives. For example, Cavity = true A Toothache =false is a

proposition to which one may ascribe a degree of belief. As explained in the previous paragraph, this proposition

may also be written as cavity ˄ toothache.

Atomic events:

The notion of an atomic event is useful in understanding the foundations of probability theory.

An atomic event is a complete specification of the state of the world about which the agent is uncertain. It can be

thought of as an assignment of particular values to all the variables of which the world is composed. For example,

if my world consists of only the Boolean variables Cavity and Toothache, then there are just four distinct atomic

events; the proposition

Cavity =false ˄ Toothache = true is one such event.

Atomic events have some important properties:

 They are mutually exclusive-at most one can actually be the case. For example, cavity A toothache and

cavity ˄ -toothache cannot both be the case.

 The set of all possible atomic events is exhaustive-at least one must be the case. That is, the disjunction of

all atomic events is logically equivalent to true.

 Any particular atomic event entails the truth or falsehood of every proposition, whether simple or complex.

This can be seen by using the standard semantics for logical connectives. For example, the atomic event

cavity ˄ ⌐ toothache entails the truth of cavity and the falsehood of cavity => toothache.

 Any proposition is logically equivalent to the disjunction of all atomic events that entail the truth of the

proposition. For example, the proposition cavity is equivalent to disjunction of the atomic events cavity ˄

toothache and cavity ˄ ⌐toothache.

204

Prior Probability:

The unconditional or prior probability associated with a proposition ‘a’ is the degree of belief accorded to it in the

absence of any other information; it is written as P (a). For example, if the prior probability that I have a cavity is

0.1, then

P (Cavity = true) = 0.1 or P (cavity) = 0.1

It is important to remember that P (a) can be used only when there is no other information. As soon as some new

information is known, we must reason with the conditional probability of a given that new information. Now if we

talk about the probabilities of all the possible values of a random variable. In that case, we will use an expression

such as P (Weather), which denotes a vector of values for the probabilities of each individual state of the weather.

So, Instead of writing the four equations

P (Weather = sunny) = 0.7

P (Weather = rain) = 0.2

P (Weather = cloudy) = 0.08

P (Weather = snow) = 0.02.

We may simply write

P (Weather) = (0.7, 0.2, 0.08, 0.02).

This statement defines a prior probability distribution for the random variable Weather

We will also use expressions such as P(Weather, Cavity) to denote the probabilities of all combinations of the

values of a set of random variable^ In that case, P(Weather, Cavity) can be represented by a 4 x 2 table of

probabilities. This is called the joint probability distribution of Weather and Cavity.

 A joint probability distribution that covers this complete set is called the full joint probability distribution.

For example, if the world consists of just the variables Cavity, Toothache, and Weather, then the full joint

distribution is given by

P (Cavity, Toothache, Weather)

This joint distribution can be represented as a 2 x 2 x 4 table with 16 entries. So, any probabilistic query can be

answered from the full joint distribution. But, for continuous variables, it is not possible to write out the entire

distribution as a table, because there are infinitely many values. Instead, one usually defines the probability that a

random variable takes on some value x as a parameterized function of x. For example, let the random variable X

denote tomorrow's maximum temperature in Berkeley. Then the sentence

P(X = x) = U [18, 26] (x)

205

X is distributed uniformly between 18 and 26 degrees Celsius. Probability distributions for continuous variables

are called probability density functions. Density functions differ in meaning from discrete distributions. For

example, using the temperature distribution given earlier, we find that

P (X = 20.5) = U [18, 26] (2 0.5) ==0 .125/C.

The technical meaning is that the probability that the temperature is in a small region around 20.5 degrees is equal,

in the limit, to 0.125 divided by the width of the region in degrees Celsius:

 P (20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125/C.

Conditional probability:

Once the agent has obtained some evidence concerning the previously unknown random variables making up the

domain, prior probabilities are no longer applicable. Instead, we use conditional or posterior probabilities. The

notation used is P (a / b), where a and b are any proposition. This is read as "the probability of a, given that all we

know is b."

 For example,

P (cavity / toothache) = 0.8

Indicates that if a patient is observed to have a toothache and no other information is yet available, then the

probability of the patient's having a cavity will be 0.8. A prior probability, such as P (cavity), can be thought of as

a special case of the conditional probability P (cavity /), where the probability is conditioned on no evidence.

Conditional probabilities can be defined in terms of unconditional probabilities. The defining equation is which

holds whenever P (b) > 0. This equation can also be written as

Which holds whenever P (b) > 0. This equation can also be written as

P (a ^ b) = P (a / b) P (b)

Which is called the product rule. It comes from the fact that, for a and b to be true, we need b to be true, and we

also need a to be true given b. We can also have it the other way;

P (a ^ b) = P (b / a) P (a)

We can also use the P notation for conditional distributions. P(X / Y) gives the values of P(X = xi / Y = yj) for each

possible i, j. As an example consider applying the product rule to each case where the propositions a and b assert

particular values of X and Y respectively. We obtain the following equations:

206

We can combine all these into the single equation

P(X, Y) = P(X / Y) P(Y)

It is wrong, because to view conditional probabilities as if they were logical implications with uncertainty added.

For example, the sentence P (a / b) = 0.8 cannot be interpreted to mean "whenever b holds, conclude that P (a) is

0.8." Such an interpretation would be wrong on two counts:

 first, P(a) always denotes the prior probability of a, not the posterior probability given some evidence;

 Second, the statement P (a / b) = 0.8 is immediately relevant just when b is the only available evidence.

When additional information c is available, the degree of belief in a is P (a / b ^ c), which might have little

relation to P (a / b).

 For example, c might tell us directly whether a is true or false. If we examine a patient who complains of

toothache, and discover a cavity, then we have additional evidence cavity, and we conclude (trivially) that

P (cavity / toothache ^ cavity) = 1.0.

3. The Axioms Of Probability

So far, we have defined a syntax for propositions and for prior and conditional probability statements about

those propositions. Now we must provide some sort of semantics for probability statements. We begin with the

basic axioms that serve to define the probability scale and its endpoints:

1. All probabilities are between 0 and 1. For any proposition a,

2. Necessarily true (i.e., valid) propositions have probability I, and necessarily false (i.e., unsatisfiable)

propositions have probability 0.

Next, we need an axiom that connects the probabilities of logically related propositions. The simplest way to

do this is to define the probability of a disjunction as follows:

3. The probability of a disjunction is given by

207

This rule is easily remembered by noting that the cases where a holds, together with the cases where b holds,

certainly cover all the cases where a V b holds; but summing the two sets of cases counts their intersection twice,

so we need to subtract Y (a ˄ b).

These three axioms are often called Kolmogorov's axioms.

Using the axioms of probability:

We can derive a variety of useful facts from the basic, axioms. For example, the familiar rule for negation follows

by substituting ~a for b in axiom 3, giving us:

The third line of this derivation is itself a useful fact and can be extended from the Boolean case to the general

discrete case. Let the discrete variable D have the domain (dl, . . . , d,). Then it is easy to show that

The probability of a proposition is equal to the sum of the probabilities of the atomic events in which it holds; that

is,

Why the axioms of probability are reasonable:

The axioms of probability can be seen as restricting the set of probabilistic beliefs that an agent can hold. Where a

logical agent cannot simultaneously believe A, B, and ~ (A ˄ B) for example. In the logical case, the semantic

definition of conjunction means that at least one of the three beliefs just mentioned must be false in the world, so it

is unreasonable for an agent to believe all three. With probabilities, on the other hand, statements refer not to the

world directly, but to the agent's own state of knowledge. Why, then, can an agent not hold the following set of

beliefs, which clearly violates axiom 3?

Finetti proved something much stronger: If Agent I expresses a set of degrees of belief that violate the axioms of

probability theory then there is a combination of bets by Agent 2 that guarantees that Agent I will lose money

every time.

208

We will not provide the proof of de Finetti's theorem, but we will show an example. Suppose that Agent 1 has the

set of degrees of belief from Equation given above. Figure 3.1 shows that if Agent 2 chooses to bet $4 on a, $3 on

b, and $2 on ~ (a V b), then Agent 1 always loses money, regardless of the outcomes for a and b.

4. Inference Using Full Joint Distributions

Here we will use the full joint distribution as the "knowledge base" from which answers to all questions may be

derived. Along the way we will also introduce several useful techniques for manipulating equations involving

probabilities. We begin with a very simple example: a domain consisting of just the three Boolean variables

Toothache, Cavity, and Catch. The full joint distribution is a 2 x 2 x 2 table as shown In Figure 4.1.

Figure 4.1 A full joint distribution for the Toothache, Cavity, and Catch world.

Now identify those atomic events in which the proposition is true and add up their probabilities. For example,

there are six atomic events in which cavity V toothache holds:

One common task is to extract the distribution over some subset of variables or a single variable. For example,

adding the entries in the first row gives the unconditional or marginal probability of cavity:

209

This process is called marginalization, or summing out-because the variables other than Cavity are summed out.

We can write the following general marginalization rule for any sets of variables Y and Z:

That is, a distribution over Y can be obtained by summing out all the other variables from any joint distribution

containing Y. A variant of this rule involves conditional probabilities instead of joint probabilities, using the

product rule:

This rule is called conditioning. Marginalization and conditioning will turn out to be useful rules for all kinds of

derivations involving probability expressions.

For example, we can compute the probability of a cavity, given evidence of a toothache, as follows:

Just to check, we can also compute the probability that there is no cavity, given a toothache:

In these two calculations the term 1/P (toothache) remains constant, no matter which value of Cavity we calculate.

In fact, it can be viewed as a normalization constant for the distribution P(Cavity / toothache), ensuring that it

adds up to 1.

We will use a to denote such constants. With this notation, we can write the two preceding equations in one:

Algorithm for probabilistic inference:

210

Figure 4.2 An algorithm for probabilistic inference by enumeration of the entries in a full

joint: distribution.

Given the full joint distribution to work with, ENUMERATE-JOINT-ASK is a complete algorithm for answering

probabilistic queries for discrete variables. It does not scale well, however: For a domain described by n Boolean

variables, it requires an input table of size 0(2 pow n) and takes

 0(2 pow n) time to process the table. So, the full joint distribution in tabular form is not a practical tool for

building reasoning systems.

5. Independence

Let us expand the full joint distribution in Figure 13.3 by adding a fourth variable, Weather .The full joint

distribution then becomes P(Toothache, Catch, Cavity, Weather), which has 32 entries (because Weather has four

values). It contains four "editions" of the table shown in Figure 4.1, one for each kind of weather. Here we may

ask what relationship these editions have to each other and to the original three-variable table. For example, how

are P(toothache, catch, cavity, Weather = cloudy) and P(toothache, catch, cavity) related?

To answer this question is to use the product rule: P(toothache, catch, cavity, Weather = cloudy)

= P (Weather = cloudy / toothache, catch, cavity) P (toothache, catch, cavity).

One should not imagine that one's dental problems influence the weather. Therefore, the following assertion seems

reasonable:

P(Weather = cloudy / toothache, catch, cavity) = P (Weather = cloudy)---------(1)

From this, we can deduce;

P(toothache, catch, cavity, weather = cloudy) = P(Weather = cloudy)P(toothache, catch, cavity).

211

Similar equation exists for every entry in P(Toothache, Catch, Cavity, Weather). In fact, we can write the general

equation;

P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity)P(Weather) .

Thus, the 32-element table for four variables can be constructed from one 8-element table and one four-element

table. This decomposition is illustrated schematically in Figure 5.1(a). The property we used in writing Equation

(1) is called “independence”.

Independence between propositions a and b can be written as

P (a / b)= P (a) or P(b / a)= P (b) or P (a A b) = P (a) P (b).

Independence between variables X and Y can be written as follows (again, these are all equivalent):

P (X / Y)= P (X) or P (Y / X)= P(Y) or P (X ,Y)= P (X) P (Y).

Figure 5.1 Two examples of factoring a large joint distribution into smaller distributions,

using absolute independence. (a) Weather and dental problems are independent. (b) Coin flips

are independent.

6. Baye’s rule and its use

We defined the product rule and pointed out that it can be written in two forms because of the commutativity of

conjunction:

Equating the two right-hand sides and dividing by P(a), we get

212

This equation is known as Bayes' rule (also Bayes' law or Bayes' theorem) .This is simple equation underlies all

modern AI systems for probabilistic inference. The more general case of multi valued variables can be written in

the P notation as;

Where again this is to be taken as representing a set of equations, each dealing with specific values of the

variables. We will also have occasion to use a more general version conditionalized on some background evidence

e:

Applying Bayes' rule: The simple case:

It requires three terms-a conditional probability and two unconditional probabilities-just to compute one

conditional probability. Bayes' rule is useful in practice because there are many cases where we do have good

probability estimates for these three numbers and need to compute the fourth. In a task such as medical diagnosis,

we often have conditional probabilities on causal relationships and want to derive a diagnosis. A doctor knows that

the disease meningitis causes the patient to have a stiff neck, say, 50% of the time. The doctor also knows some

unconditional facts: the prior probability that a patient has meningitis is 1150,000, and the prior probability that

any patient has a stiff neck is 1120. Letting s be the proposition that the patient has a stiff neck and m be the

proposition that the patient has meningitis, we have;

That is, we expect only 1 in 5000 patients with a stiff neck to have meningitis. Notice that, even though a stiff neck

is quite strongly indicated by meningitis (with probability 0.5), the probability of meningitis in the patient remains

small. This is because the prior probability on stiff necks is much higher than that on meningitis.

The same process can be applied when using Bayes' rule. We have

Thus, in order to use this approach we need to estimate P(s /~ m) instead of P(s)

The general form of Bayes' rule with normalization is

P(Y / X) = a P(X /Y) P(Y), where a is the normalization constant needed to make the entries in

213

P(Y / X) sum to 1.

Using Bayes' rule: Combining evidence:

We have seen that Bayes' rule can be useful for answering probabilistic queries conditioned on one piece of

evidence-for example, the stiff neck. In particular, we have argued that probabilistic information is often available

in the form P(effect / cause). What happens when we have two or more pieces of evidence? For example, what can

a dentist conclude if her nasty steel probe catches in the aching tooth of a patient? If we know the full joint

distribution, one can read off the answer:

We know, however, that such an approach will not scale up to larger numbers of variables. We can try using

Bayes' rule to reformulate the problem:

For this reformulation to work, we need to know the conditional probabilities of the conjunction toothache A catch

for each value of Cavity. That might be feasible for just two evidence variables, but again it will not scale up. If

there are n possible evidence variables (X rays, diet, oral hygiene, etc.), then there are 2n possible combination so f

observed values for which we would need to know conditional probabilities. We might as well go back to using

the full joint distribution.

 Rather than taking this route, we need to find some additional assertions about the domain that will enable

us to simplify the expressions. The notion of independence provides a clue, but needs refining. It would be nice if

Toothache and Catch were independent, but 'they are not: if the probe catches in the tooth, it probably has a cavity

and that probably causes a toothache. These variables are independent.

Mathematically, this property is written as;

This equation expresses the conditional independence of toothache and catch given Cavity. We can plug it into

above equation to obtain the probability of a cavity:

The general definition of conditional independence of two variables X and Y, given a third variable Z is

214

In the dentist domain, for example, it seems reasonable to assert conditional independence of the variables

Toothache and Catch, given Cavity:

Which asserts independence only for specific values of Toothache and Catch? As with absolute independence in

Equation

It turns out that the same is true for conditional independence assertions. For example, given the assertion in

Equation, We can derive decomposition as follows:

In this way, the original large table is decomposed into three smaller tables.

Representing Knowledge in an Uncertain Domain •Bayesian Networks

A directed graph in which each node is annotated with quantitative probability information Definition

1. Each node corresponds to a random variable, which may be discrete or continuous 2. A set of directed

links or arrows connects pairs of nodes. (If there is an arrow from node X to node Y , X is said to be a parent

of Y.) 3. The graph has no directed cycle. 4. Each node Xi has a conditional probability distribution

P(Xi|Parents(Xi)) that quantifies the effect of the parents on the node.

215

Complex Example of Bayesian Networks

The variables Burglary, Earthquake, Alarm, MaryCalls and JohnCalls oNew burglar alarm installed at home

oFairly reliable at detecting a burglary oResponds on occasion to minor earthquakes oTwo neighbors, John and

Mary oThey call you at work when they hear the alarm oJohn nearly always calls when he hears the alarm

oBut sometimes confuses the telephone ringing oMary likes rather loud music and misses the alarm

216

The Semantics of Bayesian Networks

The two ways to understand the meaning of Bayesian Networks oTo see the network as a representation of the

joint probability distribution To be helpful in understanding how to construct networks, oTo view it as an

encoding of a collection of conditional independence statements To be helpful in designing inference

procedures

Representing the full joint distribution

1. A method for constructing Bayesian networks(1) •How to construct a GOOD Bayesian network •Full Joint

Distribution 𝑃 𝑥1 , … . . , 𝑥 𝑛 = 𝑖=1 𝑛 𝑃 𝑥𝑖 𝑥𝑖−1 , … . . , 𝑥1) 𝑃 𝑥1 , … . . , 𝑥 𝑛 = 𝑖=1 𝑛 𝑃 𝑥𝑖 𝑃𝑎𝑟𝑒𝑛𝑡(𝑥𝑖))
•Correct representation oonly if each node is conditionally independent of its other predecessors in the

217

node ordering, given its parents The parents of node Xi should contain all those nodes in X1,..,Xi−1 that

directly influence Xi.

2. 13. A method for constructing Bayesian networks(2) •Ex oSuppose we have completed the network in

Figure except for choices of parents for MaryCalls MaryCalls is certainly influenced by whether there is

a Burglary or an Earthquake, but not directly influenced Also, given the state of the alarm, whether John

calls has no influence on Mary’s calling P(MaryCalls | JohnCalls, Alarm, Earthquake, Burglary) =

P(MaryCalls | Alarm)

3. 14. Compactness and node ordering •Bayesian network can often be far more compact than the full joint

distribution •It may not be worth the additional complexity in the network for the small gain in accuracy.

•The correct procedure for adding a node is to first add the root cause first and then give the variables that

they affect

4. 15. Compactness and node ordering •We will get a compact Bayesian network only if we choose the node

ordering well •What happens if we happen to choose the wrong order? MaryCalls→JohnCalls →

Alarm→Burglary →Earthquake MaryCalls→JohnCalls →Earthquake→Burgla ry→Alarm

Burglary→Earthquake →Alarm→MaryCalls →JohnCalls

The Semantics of Bayesian Networks:

The two ways to understand the meaning of Bayesian Networks oTo see the network as a representation of the

joint probability distribution To be helpful in understanding how to construct networks, oTo view it as an

encoding of a collection of conditional independence statements To be helpful in designing inference

procedures

Efficient Representation of Conditional Distributions:

•CPT cannot handle large number or continuous value varibles. •Relationships between parents and children

are usually describable by some proper canonical distribution. •Use the deterministic nodes to demonstrate

relationship. oValues are specified by some function. onondeterminism(no uncertainty) Ex. X = f(parents(X))

oCan be logical NorthAmerica ↔ Canada ∨ US ∨ Mexico oOr numercial Water level = inflow +

precipitation – outflow – evaporation

•Uncertain relationships can be characterized by noisy logical relationships. •Ex. noisy-OR relation. oLogical

OR with probability oEx. Cold ∨ Flu ∨ Malaria → Fever In the real world, catching a cold sometimes does

not induce fever. There is some probability of catching a cold and having a fever.

https://image.slidesharecdn.com/honyomich14-170519101244/95/probabilistic-reasoning-13-638.jpg?cb=1499660138
https://image.slidesharecdn.com/honyomich14-170519101244/95/probabilistic-reasoning-14-638.jpg?cb=1499660138
https://image.slidesharecdn.com/honyomich14-170519101244/95/probabilistic-reasoning-15-638.jpg?cb=1499660138

218

Noisy-OR oAll possible causes are listed. (the missing can be covered by leak node) oCompute probability

from the inhibition probability

Approximate Inference in Bayesian Networks:

Difficult to calculate multiply connected networks •It is essential to consider approximate inference methods

•Monte Carlo algorithms oRandomized sampling algorithms otwo families of algorithms: direct sampling and

Markov chain sampling oApply to the computation

Relational and First-order Probability models:

Bayesian networks are essentially propositional logic. •The set of random variables is fixed and finite.

•However, if the number becomes large, intractable. •Need another method to represent the model

The set of first-order models is infinite. •Use database semantics instead called “Relational Probability

models”. •Make unique names assumption and assume domain closure. •Like first-order logic oConstant

oFunction oPredicate symbols

Other Approaches to Uncertain Reasoning:

Rule-based methods for uncertain reasoning •Emerged from logical inference •Require 3 desirable properties

oLocality : If A B, we can conclude B given evidence A without worrying about any other rules. But in

probabilistic systems, we need to consider all evidence. oDetachment : If we can derive B, we can use it

without caring how it was derived. oTruth-functionality : truth value of complex sentences can be computed

from the truth of the components. Probability combination does not work this way

219

UNIT IV:

LEARNING

Learning is the improvement of performance with experience over time.

Learning element is the portion of a learning AI system that decides how to modify the

performance element and implements those modifications.

We all learn new knowledge through different methods, depending on the type of material to be

learned, the amount of relevant knowledge we already possess, and the environment in which the

learning takes place. There are five methods of learning . They are,

1. Memorization (rote learning)

2. Direct instruction (by being told)

3. Analogy

4. Induction

5. deduction

Learning by memorizations is the simplest from of le4arning. It requires the least amount of

inference and is accomplished by simply copying the knowledge in the same form that it will be

used directly into the knowledge base.

Example:- Memorizing multiplication tables, formulate , etc.

Direct instruction is a complex form of learning. This type of learning requires more inference

than role learning since the knowledge must be transformed into an operational form before

learning when a teacher presents a number of facts directly to us in a well organized manner.

Analogical learning is the process of learning a new concept or solution through the use of

similar known concepts or solutions. We use this type of learning when solving problems on an

exam where previously learned examples serve as a guide or when make frequent use of

analogical learning. This form of learning requires still more inferring than either of the previous

forms. Since difficult transformations must be made between the known and unknown situations.

Learning by induction is also one that is used frequently by humans . it is a powerful form of

learning like analogical learning which also require s more inferring than the first two methods.

This learning re quires the use of inductive inference, a form of invalid but useful inference. We

use inductive learning ofinstances of examples of the concept. For example we learn the

concepts of color or sweet taste after experiencing the sensations associated with several

examples of colored objects or sweet foods.

Deductive learning is accomplished through a sequence of deductive inference steps using

known facts. From the known facts, new facts or relationships are logically derived. Deductive

learning usually requires more inference than the other methods.

Review Questions:-

1. what is perception ?

220

2. How do we overcome the Perceptual Problems?

3. Explain in detail the constraint satisfaction waltz algorithm?

4. What is learning ?

5. What is Learning element ?

6. List and explain the methods of learning?

Types of learning:- Classification or taxonomy of learning types serves as a guide in studying or

comparing a differences among them. One can develop learning taxonomies based on the type of

knowledge representation used (predicate calculus , rules, frames), the type of knowledge

learned (concepts, game playing, problem solving), or by the area of application(medical

diagnosis , scheduling , prediction and so on).

The classification is intuitively more appealing and is one which has become popular among

machine learning researchers . it is independent of the knowledge domain and the representation

scheme is used. It is based on the type of inference strategy employed or the methods used in the

learning process. The five different learning methods under this taxonomy are:

Memorization (rote learning)

Direct instruction(by being told)

Analogy

Induction

Deduction

Learning by memorization is the simplest form of learning. It requires the least5 amount of

inference and is accomplished by simply copying the knowledge in the same form that it will be

221

used directly into the knowledge base. We use this type of learning when we

memorize multiplication tables ,

for example.

A slightly more complex form of learning is by direct instruction. This type of learning

requires more understanding and inference than role learning since the knowledge must

be transformed into an operational form before being integrated into the knowledge

base. We use this type of learning when a teacher presents a number of facts directly to

us in a well organized manner.

The third type listed, analogical learning, is the process of learning an ew concept or

solution through the use of similar known concepts or solutions. We use this type of

learning when solving problems on an examination where previously learned examples

serve as a guide or when we learn to drive a truck using our knowledge of car driving.

We make frewuence use of analogical learning. This form of learning requires still

more inferring than either of the previous forms, since difficult transformations must be

made between the known and unknown situations. This is a kind of application of

knowledge in a new situation.

The fourth type of learning is also one that is used frequency by humans. It is a

powerful form of learning which, like analogical learning, also requires more inferring

than the first two methods. This form of learning requires the use of inductive

inference, a form of invalid but useful inference. We use inductive learning when wed

formulate a general concept after seeing a number of instance or examples of the

concept. For example, we learn the concepts of color sweet taste after experiencing the

sensation associated with several examples of colored objects or sweet foods.

The final type of acquisition is deductive learning. It is accomplished through a

sequence of deductive inference steps using known facts. From the known facts, new

facts or relationships are logically derived. Deductive learning usually requires more

inference than the other methods. The inference method used is, of course , a deductive

type, which is a valid from of inference.

In addition to the above classification, we will sometimes refer to learning methods as

wither methods or knowledge-rich methods. Weak methods are general purpose

methods in which little or no initial knowledge is available. These methods are more

mechanical than the classical AI knowledge – rich methods. They often rely on a form

of heuristics search in the learning process.

Rote Learning

Rote learning is the basic learning activity. Rote learning is a memorization technique based

https://en.wikipedia.org/wiki/Memorization

222

on repetition. It is also called memorization because the knowledge, without any

modification is, simply copied into the knowledge base. As computed values are stored,

this technique can save a significant amount of time.

Rote learning technique can also be used in complex learning systems provided

sophisticated techniques are employed to use the stored values faster and there is a

generalization to keep the number of stored information down to a manageable level.

Checkers-playing program, for ex

The idea is that one will be able to quickly recall the meaning of the material the more

one repeats it. Some of the alternatives to rote learning include meaningful learning,

associative learning, and active learning. ample, uses this technique to learn the board

positions it evaluates in its look-ahead search.

 Learning By Taking Advice.

This is a simple form of learning. Suppose a programmer writes a set of instructions

to instruct the computer what to do, the programmer is a teacher and the computer is

a student. Once learned (i.e. programmed), the system will be in a position to do new

things.

The advice may come from many sources: human experts, internet to name a few. This

type of learning requires more inference than rote learning. The knowledge must be

transformed into an operational form before stored in the knowledge base. Moreover

the reliability of the source of knowledge should be considered.

The system should ensure that the new knowledge is conflicting with the existing

knowledge. FOO (First Operational Operationaliser), for example, is a learning system

which is used to learn the game of Hearts. It converts the advice which is in the form of

principles, problems, and methods into effective executable (LISP) procedures (or

knowledge). Now this knowledge is ready to use.

 General Learning Model.

General Learning Model: - AS noted earlier, learning can be accomplished using a

number of different methods, such as by memorization facts, by being told, or by

studying examples like problem solution. Learning requires that new knowledge

structures be created from some form of input stimulus. This new knowledge must then

be assimilated into a knowledge base and be tested in some way for its utility. Testing

https://en.wikipedia.org/wiki/Repetition_(rhetorical_device)
http://intelligence.worldofcomputing.net/knowledge-representation/what-is-knowledge.html

223

means that the knowledge should be used in performance of some task from which

meaningful feedback can be obtained, where the feedback provides some measure of

the accuracy and usefulness of the newly acquired knowledge.

General Learning Model

general learning model is depicted in figure 4.1 where the environment has been

included as a part of the overall learner system. The environment may be regarded as

either a form of nature which produces random stimuli or as a more organized training

source such as a teacher which provides carefully selected training examples for the

learner component. The actual form of environment used will depend on the particular

learning paradigm. In any case, some representation language must be assumed for

communication between the environment and the learner. The language may be the

same representation scheme as that used in the knowledge base (such as a form of

predicate calculus). When they are hosen to be the same, we say the single

representation trick is being used. This usually results in a simpler implementation since

it is not necessary to transform between two or more different representations.

 For some systems the environment may be a user working at a keyboard . Other systems will use

 program modules to simulate a particular environment. In even more realistic cases the system

 will have real physical sensors which interface with some world environment.

Inputs to the learner component may be physical stimuli of some type or descriptive ,

symbolic training examples. The information conveyed to the learner component is

used to create and modify knowledge structures in the knowledge base. This same

knowledge is used by the performance component to carry out some tasks, such as

solving a problem playing a game, or classifying instances of some concept.given a

task, the performance component produces a response describing its action in

performing the task. The critic module then evaluates this response relative to an

optimal response.

Feedback , indicating whether or not the performance was acceptable , is then sent by

the critic module to the learner component for its subsequent use in modifying the

224

structures in the knowledge base. If proper learning was accomplished, the system’s

performance will have improved with the changes made to the knowledge base.

The cycle described above may be repeated a number of times until the performance of

the system has reached some acceptable level, until a known learning goal has been

reached, or until changes ceases to occur in the knowledge base after some chosen

number of training examples have been observed.

There are several important factors which influence a system’s ability to learn in

addition to the form of representation used. They include the types of training

provided, the form and extent of any initial background knowledge , the type of

feedback provided, and the learning algorithms used.

The type of training used in a system can have a strong effect on performance, much

the same as it does for humans. Training may consist of randomly selected instance or

examples that have been carefully selected and ordered for presentation. The instances

may be positive examples of some concept or task a being learned, they may be

negative, or they may be mixture of both positive and negative. The instances may be

well focused using only relevant information, or they may contain a variety of facts and

details including irrelevant data.

There are Many forms of learning can be characterized as a search through a space of

possible hypotheses or solutions. To make learning more efficient. It is necessary to

constrain this search process or reduce the search space. One method of achieving this

is through the use of background knowledge which can be used to constrain the search

space or exercise control operations which limit the search process.

Feedback is essential to the learner component since otherwise it would never know if

the knowledge structures in the knowledge base were improving or if they were

adequate for the performance of the given tasks. The feedback may be a simple yes or

no type of evaluation, or it

may contain more useful information describing why a particular action was good or

bad. Also , the feedback may be completely reliable, providing an accurate assessment

of the performance or it may contain noise, that is the feedback may actually be

incorrect some of the time. Intuitively , the feedback must be accurate more than 50% of

the time; otherwise the system carries useful information, the learner should also to

build up a useful corpus of knowledge quickly. On the other hand, if the feedback is

noisy or unreliable, the learning process may be very slow and the resultant knowledge

incorrect.

225

Learning Neural Network

 Perceptron

 The perceptron an invention of (1962) Rosenblatt was one of the earliest

neural network models.

 Also, It models a neuron by taking a weighted sum of its inputs and sending

the output 1 if the sum is greater than some adjustable threshold value

(otherwise it sends 0).

Figure: A neuron & a Perceptron

Figure: Perceptron with adjustable threshold

 In case of zero with two inputs g(x) = w0 + w1x1 + w2x2 = 0

 x2 = -(w1/w2)x1 – (w0/w2) → equation for a line

 the location of the line is determined by the weight w0 w1 and w2

 if an input vector lies on one side of the line, the perceptron will output 1

 if it lies on the other side, the perception will output 0

 Moreover, Decision surface: a line that correctly separates the training

instances corresponds to a perfectly function perceptron.

Perceptron Learning Algorithm

226

Given: A classification problem with n input feature (x1, x2, …., xn) and two output

classes. Compute A set of weights (w0, w1, w2,….,wn) that will cause a perceptron

to fire whenever the input falls into the first output class.

1. Create a perceptron with n+ 1 input and n+ 1 weight, where the x0 is always set to 1.
2. Initialize the weights (w0, w1,…., wn) to random real values.

3. Iterate through the training set, collecting all examples misclassified by the

current set of weights.

4. If all examples are classified correctly, output the weights and quit.

5. Otherwise, compute the vector sum S of the misclassified input vectors where

each vector has the form (x0, x1, …, Xn). In creating the sum, add to S a vector

x if x is an input for which the perceptron incorrectly fails to fire, but – x if x is

an input for which the perceptron incorrectly fires. Multiply sum by a scale

factor η.

6. Moreover, Modify the weights (w0, w1, …, wn) by adding the elements of the

vector S to them.

7. Go to step 3.

 The perceptron learning algorithm is a search algorithm. It begins with a random

initial state and finds a solution state. The search space is simply all possible

assignments of real values to the weights of the perception, and the search

strategy is gradient descent.

 The perceptron learning rule is guaranteed to converge to a solution in a finite

number of steps, so long as a solution exists.

 Moreover, This brings us to an important question. What problems can a

perceptron solve? Recall that a single-neuron perceptron is able to divide the

input space into two regions.

 Also, The perception can be used to classify input vectors that can be

separated by a linear boundary. We call such vectors linearly separable.

 Unfortunately, many problems are not linearly separable. The classic example is

the XOR gate. It was the inability of the basic perceptron to solve such simple

problems that are not linearly separable or non-linear.

Genetic Learning

Supervised Learning

Supervised learning is the machine learning task of inferring a function from

labeled training data.

Moreover, The training data consist of a set of training examples.

In supervised learning, each example a pair consisting of an input object (typically a

vector) and the desired output value (also called the supervisory signal).

Training set

A training set a set of data used in various areas of information science to discover

potentially predictive relationships.

Training sets used in artificial intelligence, machine learning, genetic programming,

intelligent systems, and statistics.

227

In all these fields, a training set has much the same role and often used in conjunction

with a test set.

Testing set

A test set is a set of data used in various areas of information science to assess the

strength and utility of a predictive relationship.

Moreover, Test sets are used in artificial intelligence, machine learning, genetic

programming, and statistics. In all these fields, a test set has much the same role.

Accuracy of classifier: Supervised learning

In the fields of science, engineering, industry, and statistics. The accuracy of a

measurement system is the degree of closeness of measurements of a quantity to that

quantity’s actual (true) value.

Sensitivity analysis: Supervised learning

Similarly, Local Sensitivity as correlation coefficients and partial derivatives can only

use, if the correlation between input and output is linear.

Regression: Supervised learning

In statistics, regression analysis is a statistical process for estimating the

relationships among variables.

Moreover, It includes many techniques for modeling and analyzing several variables.

When the focus on the relationship between a dependent variable and one or more

independent variables. More specifically, regression analysis helps one understand how

the typical value of the dependent variable (or ‘criterion variable’) changes when any

one of the independent variables varied. Moreover, While the other independent

variables held fixed.

1. Learning from Example : Induction

A process of learning by example. The system tries to induce a general rule from a set of

observed instances. The learning methods extract rules and patterns out of massive data sets.

The learning processes belong to supervised learning, does classification and constructs class

definitions, called induction or concept learning.

The techniques used for constructing class definitions (or concept leaning) are :

• Winston's Learning program

• Version Spaces

• Decision Trees

228

1.1 Winston's Learning

Winston (1975) described a Blocks World Learning program. This program operated

in a simple blocks domain. The goal is to construct representation of the definition of

concepts in the blocks domain.

Example : Concepts such a "house".

■ Start with input, a line drawing of a blocks world structure. It learned

Concepts House, Tent, Arch as :

brick (rectangular block) with a wedge (triangular block) suitably placed on top of

it, tent – as 2 wedges touching side by side, or an arch – as 2 non-touching bricks

supporting a third wedge or brick.

■ The program for Each concept is learned through near miss. A near miss is an object

that is not an instance of the concept but a very similar to such instances.

■ The program uses procedures to analyze the drawing and construct a semantic net

representation.

■ An example of such an structural for the house is shown below.

Object - house Semantic net

■ Node A represents entire structure, which is composed of two parts : node B, a

Brick Wedge

has-part
 A

has-part

 B

isa

Supported - by

C

isa

229

Wedge, and node C, a Brick.

Links in network include supported-by, has-part, and isa.

• Winston's Program

■ Winston's program followed 3 basic steps in concept formulation:

1. Select one known instance of the concept. Call this

the concept definition.

2. Examine definitions of other known instance of the concept.

Generalize the definition to include them.

3. Examine descriptions of near misses. Restrict

the definition to exclude these.

■ Both steps 2 and 3 of this procedure rely heavily on comparison process by which

similarities and differences between structures can be detected.

■ Winston's program can be similarly applied to learn other concepts such as

"ARCH".

LEARNING DECISION TREES:

• Come up with a set of attributes to describe the object or situation.

• Collect a complete set of examples (training set) from which the decision tree can

derive a hypothesis to define (answer) the goal predicate.

Decision Tree Example:

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

230

5. Patrons: number of people in the restaurant (None, Some, Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Logical Representation of a Path

r [Patrons(r, full) -30)

Expressiveness of Decision Trees

• Any Boolean function can be written as a decision tree

• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with one path to

leaf for each

example (unless f nondeterministic in x) but it probably won't generalize to new examples

• Prefer to find more compact decision

trees Limitations

– Can only describe one object at a time.

– Some functions require an exponentially large decision tree.

• E.g. Parity function, majority function

• Decision trees are good for some kinds of functions, and bad for others.

• There is no one efficient representation for all kinds of functions.

231

Principle Behind the Decision-Tree-Learning Algorithm

• Uses a general principle of inductive learning often called Ockham’s

razor: “The most likely hypothesis is the simplest one that is

consistent with all

observations.”

• Decision trees can express any function of the input attributes.

DECISION TREE LEARNING ALGORITHM:

• Aim: find a small tree consistent with the training examples

• Idea: (recursively) choose "most significant" attribute as root of

(sub)tree Choosing an attribute tests:

• Idea: a good attribute splits the examples into subsets that are (ideally) "all

positive" or "all negative"

• Patrons? is a better

choice Attribute-based

representations

• Examples described by attribute values (Boolean, discrete, continuous)

• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or

negative (F) Using information theory

• To implement Choose-Attribute in the DTL algorithm

• Information Content (Entropy):

I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)

• For a training set containing p positive examples and n negative examples:

232

A chosen attribute A divides the training set E into subsets E1, … , Ev according to

their values for A, where A has v distinct values. Information Gain (IG) or reduction in

entropy from the attribute test: remainder (A),

 Choose the attribute with the largest IG

• For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

• Patrons has the highest IG of all attributes and so is chosen by the DTL

algorithm as the root

Assessing the performance of the learning algorithm:

• A learning algorithm is good if it produces hypotheses that do a good job of

predicating the classifications of unseen examples

• Test the algorithm’s prediction performance on a set of new examples, called a test set.

233

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

 Choose the attribute with the largest IG

• For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

 Assessing the performance of the learning algorithm:

• A learning algorithm is good if it produces hypotheses that do a good job of predicating the

classifications of unseen examples

234

UNIT V

Expert systems:

Expert system = knowledge + problem-solving methods A knowledge base that captures

the domain-specific knowledge and an inference engine that consists of algorithms for

manipulating the knowledge represented in the knowledge base to solve a problem presented to

the system.

Expert systems (ES) are one of the prominent research domains of AI. It is introduced by the

researchers at Stanford University, Computer Science Department.

What are Expert Systems?

The expert systems are the computer applications developed to solve complex problems in a

particular domain, at the level of extra-ordinary human intelligence and expertise.

Characteristics of Expert Systems

 High performance
 Understandable

 Reliable

 Highly responsive

Capabilities of Expert Systems

The expert systems are capable of −

 Advising

 Instructing and assisting human in decision making

 Demonstrating

 Deriving a solution

 Diagnosing

 Explaining

 Interpreting input

 Predicting results

 Justifying the conclusion

 Suggesting alternative options to a problem

They are incapable of −

 Substituting human decision makers

 Possessing human capabilities

235

 Producing accurate output for inadequate knowledge base

 Refining their own knowledge

Components of Expert Systems

The components of ES include −

 Knowledge Base

 Inference Engine

 User Interface

Let us see them one by one briefly −

Knowledge Base

It contains domain-specific and high-quality knowledge. Knowledge is required to exhibit

intelligence. The success of any ES majorly depends upon the collection of highly accurate and

precise knowledge.

What is Knowledge?

The data is collection of facts. The information is organized as data and facts about the task

domain. Data, information, and past experience combined together are termed as knowledge.

Components of Knowledge Base

The knowledge base of an ES is a store of both, factual and heuristic knowledge.

 Factual Knowledge − It is the information widely accepted by the Knowledge Engineers

and scholars in the task domain.

 Heuristic Knowledge − It is about practice, accurate judgement, one’s ability of

evaluation, and guessing.

Knowledge representation

236

It is the method used to organize and formalize the knowledge in the knowledge base. It is in the

form of IF-THEN-ELSE rules.

Knowledge Acquisition

The success of any expert system majorly depends on the quality, completeness, and accuracy of

the information stored in the knowledge base.

The knowledge base is formed by readings from various experts, scholars, and the Knowledge

Engineers. The knowledge engineer is a person with the qualities of empathy, quick learning,

and case analyzing skills.

He acquires information from subject expert by recording, interviewing, and observing him at

work, etc. He then categorizes and organizes the information in a meaningful way, in the form of

IF-THEN-ELSE rules, to be used by interference machine. The knowledge engineer also

monitors the development of the ES.

Inference Engine

Use of efficient procedures and rules by the Inference Engine is essential in deducting a correct,

flawless solution.

In case of knowledge-based ES, the Inference Engine acquires and manipulates the knowledge

from the knowledge base to arrive at a particular solution.

In case of rule based ES, it −

 Applies rules repeatedly to the facts, which are obtained from earlier rule application.

 Adds new knowledge into the knowledge base if required.

 Resolves rules conflict when multiple rules are applicable to a particular case.

To recommend a solution, the Inference Engine uses the following strategies −

 Forward Chaining

 Backward Chaining

Forward Chaining

It is a strategy of an expert system to answer the question, “What can happen next?”

Here, the Inference Engine follows the chain of conditions and derivations and finally deduces

the outcome. It considers all the facts and rules, and sorts them before concluding to a solution.

This strategy is followed for working on conclusion, result, or effect. For example, prediction of

share market status as an effect of changes in interest rates.

237

Backward Chaining

With this strategy, an expert system finds out the answer to the question, “Why this happened?”

On the basis of what has already happened, the Inference Engine tries to find out which

conditions could have happened in the past for this result. This strategy is followed for finding

out cause or reason. For example, diagnosis of blood cancer in humans.

User Interface

User interface provides interaction between user of the ES and the ES itself. It is generally

Natural Language Processing so as to be used by the user who is well-versed in the task domain.

The user of the ES need not be necessarily an expert in Artificial Intelligence.

It explains how the ES has arrived at a particular recommendation. The explanation may appear

in the following forms −

 Natural language displayed on screen.

 Verbal narrations in natural language.

 Listing of rule numbers displayed on the screen.

The user interface makes it easy to trace the credibility of the deductions.

Requirements of Efficient ES User Interface

 It should help users to accomplish their goals in shortest possible way.

 It should be designed to work for user’s existing or desired work practices.

 Its technology should be adaptable to user’s requirements; not the other way round.

 It should make efficient use of user input.

238

Expert Systems Limitations

No technology can offer easy and complete solution. Large systems are costly, require

significant development time, and computer resources. ESs have their limitations which include

−

 Limitations of the technology

 Difficult knowledge acquisition

 ES are difficult to maintain

 High development costs

Applications of Expert System

The following table shows where ES can be applied.

Application Description

Design Domain Camera lens design, automobile design.

Medical Domain
Diagnosis Systems to deduce cause of disease from observed

data, conduction medical operations on humans.

Monitoring Systems
Comparing data continuously with observed system or with

prescribed behavior such as leakage monitoring in long

petroleum pipeline.

Process Control Systems Controlling a physical process based on monitoring.

Knowledge Domain Finding out faults in vehicles, computers.

Finance/Commerce
Detection of possible fraud, suspicious transactions, stock

market trading, Airline scheduling, cargo scheduling.

Expert System Technology

There are several levels of ES technologies available. Expert systems technologies include −

 Expert System Development Environment − The ES development environment includes

hardware and tools. They are −

o Workstations, minicomputers, mainframes.
o High level Symbolic Programming Languages such as LISt Programming (LISP)

and PROgrammation en LOGique (PROLOG).

o Large databases.
 Tools − They reduce the effort and cost involved in developing an expert system to large

extent.

o Powerful editors and debugging tools with multi-windows.

o They provide rapid prototyping
o Have Inbuilt definitions of model, knowledge representation, and inference

design.

 Shells − A shell is nothing but an expert system without knowledge base. A shell

provides the developers with knowledge acquisition, inference engine, user interface, and

explanation facility. For example, few shells are given below −

239

o Java Expert System Shell (JESS) that provides fully developed Java API for
creating an expert system.

o Vidwan, a shell developed at the National Centre for Software Technology,
Mumbai in 1993. It enables knowledge encoding in the form of IF-THEN rules.

Development of Expert Systems: General Steps

The process of ES development is iterative. Steps in developing the ES include −

Identify Problem Domain

 The problem must be suitable for an expert system to solve it.

 Find the experts in task domain for the ES project.

 Establish cost-effectiveness of the system.

Design the System

 Identify the ES Technology

 Know and establish the degree of integration with the other systems and databases.

 Realize how the concepts can represent the domain knowledge best.

Develop the Prototype

From Knowledge Base: The knowledge engineer works to −

 Acquire domain knowledge from the expert.

 Represent it in the form of If-THEN-ELSE rules.

Test and Refine the Prototype

 The knowledge engineer uses sample cases to test the prototype for any deficiencies in

performance.

 End users test the prototypes of the ES.

Develop and Complete the ES

 Test and ensure the interaction of the ES with all elements of its environment, including

end users, databases, and other information systems.

 Document the ES project well.

 Train the user to use ES.

Maintain the ES

 Keep the knowledge base up-to-date by regular review and update.

 Cater for new interfaces with other information systems, as those systems evolve.

Benefits of Expert Systems

 Availability − They are easily available due to mass production of software.

 Less Production Cost − Production cost is reasonable. This makes them affordable.

 Speed − They offer great speed. They reduce the amount of work an individual puts in.

 Less Error Rate − Error rate is low as compared to human errors.

 Reducing Risk − They can work in the environment dangerous to humans.

 Steady response − They work steadily without getting motional, tensed or fatigued.

Expert System.

DEFINITION - An expert system is a computer program that simulates the judgement and

behavior of a human or an organization that has expert knowledge and experience in a particular

field. Typically, such a system contains a knowledge base containing accumulated experience

http://artificialintelligence-notes.blogspot.in/2010/12/expert-system.html

240

and a set of rules for applying the knowledge base to each particular situation that is described to

the program. Sophisticated expert systems can be enhanced with additions to the knowledge base

or to the set of rules.

Among the best-known expert systems have been those that play chess and that assist in medical

diagnosis.

An expert system is software that attempts to provide an answer to a problem, or clarify

uncertainties where normally one or more human experts would need to be consulted. Expert

systems are most common in a specific problem domain, and is a traditional application and/or

subfield of artificial intelligence (AI). A wide variety of methods can be used to simulate the

performance of the expert; however, common to most or all are: 1) the creation of a knowledge

base which uses some knowledge representation structure to capture the knowledge of

the Subject Matter Expert (SME); 2) a process of gathering that knowledge from the SME and

codifying it according to the structure, which is called knowledge engineering; and 3) once the

system is developed, it is placed in the same real world problem solving situation as the human

SME, typically as an aid to human workers or as a supplement to some information system.

Expert systems may or may not have learning components.

factors

The MYCIN rule-based expert system introduced a quasi-probabilistic approach called certainty

factors, whose rationale is explained below.

A human, when reasoning, does not always make statements with 100% confidence: he might

venture, "If Fritz is green, then he is probably a frog" (after all, he might be a chameleon). This

type of reasoning can be imitated using numeric values called confidences. For example, if it is

known that Fritz is green, it might be concluded with 0.85 confidence that he is a frog; or, if it is

known that he is a frog, it might be concluded with 0.95 confidence that he hops. These certainty

factor (CF) numbers quantify uncertainty in the degree to which the available evidence supports

a hypothesis. They represent a degree of confirmation, and are not probabilities in a Bayesian

sense. The CF calculus, developed by Shortliffe & Buchanan, increases or decreases the CF

associated with a hypothesis as each new piece of evidence becomes available. It can be mapped

to a probability update, although degrees of confirmation are not expected to obey the laws of

probability. It is important to note, for example, that evidence for hypothesis H may have nothing

to contribute to the degree to which Not_h is confirmed or disconfirmed (e.g., although a fever

lends some support to a diagnosis of infection, fever does not disconfirm alternative hypotheses)

and that the sum of CFs of many competing hypotheses may be greater than one (i.e., many

hypotheses may be well confirmed based on available evidence).

The CF approach to a rule-based expert system design does not have a widespread following, in

part because of the difficulty of meaningfully assigning CFs a priori. (The above example of

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Expert
http://en.wikipedia.org/wiki/Problem_domain

241

green creatures being likely to be frogs is excessively naive.) Alternative approaches to quasi-

probabilistic reasoning in expert systems involve fuzzy logic, which has a firmer mathematical

foundation. Also, rule-engine shells such as Drools and Jess do not support probability

manipulation: they use an alternative mechanism called salience, which is used to prioritize the

order of evaluation of activated rules.

In certain areas, as in the tax-advice scenarios discussed below, probabilistic approaches are not

acceptable. For instance, a 95% probability of being correct means a 5% probability of being

wrong. The rules that are defined in such systems have no exceptions: they are only a means of

achieving software flexibility when external circumstances change frequently. Because rules are

stored as data, the core software does not need to be rebuilt each time changes to federal and

state tax codes are announced.

Chaining

Two methods of reasoning when using inference rules are forward chaining and backward

chaining.

Forward chaining starts with the data available and uses the inference rules to extract more data

until a desired goal is reached. An inference engine using forward chaining searches the

inference rules until it finds one in which the if clause is known to be true. It then concludes the

then clause and adds this information to its data. It continues to do this until a goal is reached.

Because the data available determines which inference rules are used, this method is also

classified as data driven.

Backward chaining starts with a list of goals and works backwards to see if there is data which

will allow it to conclude any of these goals. An inference engine using backward chaining would

search the inference rules until it finds one which has a then clause that matches a desired goal. If

the if clause of that inference rule is not known to be true, then it is added to the list of goals.

SW Architecture.

The following general points about expert systems and their architecture have been outlined:

1. The sequence of steps taken to reach a conclusion is dynamically synthesized with each new

case. The sequence is not explicitly programmed at the time that the system is built.

2. Expert systems can process multiple values for any problem parameter. This permits more

than one line of reasoning to be pursued and the results of incomplete (not fully determined)

reasoning to be presented.

242

3. Problem solving is accomplished by applying specific knowledge rather than specific

technique. This is a key idea in expert systems technology. It reflects the belief that human

experts do not process their knowledge differently from others, but they do possess different

knowledge. With this philosophy, when one finds that their expert system does not produce the

desired results, work begins to expand the knowledge base, not to re-program the procedures.

End user

There are two styles of user-interface design followed by expert systems. In the original style of

user interaction, the software takes the end-user through an interactive dialog. In the following

example, a backward-chaining system seeks to determine a set of restaurants to recommend:

Q. Do you know which restaurant you want to go to?

A. No

243

Q. Is there any kind of food you would particularly like?

A. No

Q. Do you like spicy food?

A. No

Q. Do you usually drink wine with meals?

A. Yes

Q. When you drink wine, is it French wine?

A. Yes

Participants

There are generally three individuals having an interaction in an expert system.

Primary among these is the end-user, the individual who uses the system for its

problem solving assistance. In the construction and maintenance of the system

there are two other roles: the problem domain expert who builds the system and

supplies the knowledge base, and a knowledge engineer who assists the experts in

determining the representation of their knowledge, enters this knowledge into an

explanation module and who defines the inference technique required to solve the

problem. Usually the knowledge engineer will represent the problem solving

activity in the form of rules. When these rules are created from domain expertise,

the knowledge base stores the rules of the expert system.

Inference rule

An understanding of the "inference rule" concept is important to understand

expert systems. An inference rule is a conditional statement with two parts: an if

clause and a then clause. This rule is what gives expert systems the ability to find

solutions to diagnostic and prescriptive problems. An example of an inference

rule is:

If the restaurant choice includes French and the

occasion is romantic, Then the restaurant choice is

definitely Paul Bocuse.

Procedure node interface

244

The function of the procedure node interface is to receive information from the

procedures coordinator and create the appropriate procedure call. The ability to

call a procedure and receive information from that procedure can be viewed as

simply a generalization of input from the external world. In some earlier expert

systems external information could only be obtained in a

predetermined manner, which only allowed certain information to be acquired.

Through the knowledge base, this expert system disclosed in the cross-referenced

application can invoke any procedure allowed on its host system. This makes the

expert system useful in a much wider class of knowledge domains than if it had

no external access or only limited external access.

In the area of machine diagnostics using expert systems, particularly self-

diagnostic applications, it is not possible to conclude the current state of "health"

of a machine without some information. The best source of information is the

machine itself, for it contains much detailed information that could not reasonably

be provided by the operator.

The knowledge that is represented in the system appears in the rulebase. In the

rulebase described in the cross-referenced applications, there are basically four

different types of objects, with the associated information:

1. Classes: Questions asked to the user.

2. Parameters: Place holders for character strings which may be variables that

can be inserted into a class question at the point in the question where the

parameter is positioned.

3. Procedures: Definitions of calls to external procedures.

3. Rule nodes: Inferences in the system are made by a tree structure which

indicates the rules or logic mimicking human reasoning. The nodes of these trees are

called rule nodes. There are several different types of rule nodes.

Expert Systems/Shells. The E.S shell simplifies the process of creating a

knowledge base. It is the shell that actually processes the information entered by a

user relates it to the concepts contained in the knowledge base and provides an

245

assessment or solution for a particular problem.

Knowledge Acquisition

Knowledge acquisition is the process used to define the rules and

ontologies required for a knowledge-based system. The phrase was first

used in conjunction with expert systems to describe the initial tasks

associated with developing an expert system, namely finding and

interviewing domain experts and capturing their knowledge via rules,

objects, and frame- based ontologies.

Expert systems were one of the first successful applications of artificial

intelligence technology to real world business problems. Researchers at

Stanford and other AI laboratories worked with doctors and other highly skilled

experts to develop systems that could automate complex tasks such as medical

diagnosis. Until this point computers had mostly been used to automate highly

data intensive tasks but not for complex reasoning. Technologies such as

inference engines allowed developers for the first time to tackle more complex

problems.

As expert systems scaled up from demonstration prototypes to industrial

strength applications it was soon realized that the acquisition of domain expert

knowledge was one of if not the most critical task in the knowledge engineering

process. This knowledge acquisition process became an intense area of research

on its own. One of the earlier works on the topic used Batesonian theories of

learning to guide the process.

One approach to knowledge acquisition investigated was to use natural language

parsing and generation to facilitate knowledge acquisition. Natural language

parsing could be performed on manuals and other expert documents and an initial

first pass at the rules and objects could be developed automatically. Text

generation was also extremely useful in generating explanations for system

behavior. This greatly facilitated the development and maintenance of expert

systems. A more recent approach to knowledge acquisition is a re-use based

approach. Knowledge can be developed in ontologies that conform to standards

such as the Web Ontology Language (OWL). In this way knowledge can be

standardized and shared across a broad community of knowledge workers. One

example domain where this approach has been successful

Artificial Intelligence, CSE Dept NRCM, Hyderabad

Artificial Intelligence – Unit-wise Question Bank

UNIT – 1

1. What is Artificial Intelligence? Explain in detail?

2. What is an agent? Explain in detail about different types of Agents?

3. Discuss different types of Environments?

4. What is uninformed search strategy? Explain in detail?

5. What is informed search strategy? Explain with example?

6. Describe about the problem solving agent?

7. What is A* algorithm? Explain in detail?

8. Explain in detail about typical intelligent agents.

9. Describe goal-based agent or Problem Solving Agent? Explain in detail?

10. Briefly Explain the history of Artificial Intelligence?

11. Explain the Heuristic Search Techniques.

12. Explain basic agent and Learning Agents.

13. Explain the following informed search strategies with examples.

(a) Hill Climbing (b) Generic Best-First (c) A*

14. Differentiate Informed & Uninformed search. Give examples?

15. Explain the following uninformed search strategies with examples.

(a) Breadth First Search. (b) Depth-first with Iterative Deepening

(c) Depth First Search (d) Depth Limited Search

UNIT – 2

1. Write short notes on Alpha-Beta Pruning?

2. Explain about Stochastic search?

3. Give a brief note on Alpha-Beta Pruning?

4. Explain about the forward chaining and backward chaining?

5. Explain about Bayes Theorem in detail?

6. What is first order Logic?

7. What is Probabilistic Logic?

8. What is PEAS? Explain different agent types with their PEAS descriptions?

9. Define Breadth First Search and Depth First Search algorithms with simple example?

10. Give a detail notes on models for First order logic?

11. Discuss probabilistic reasoning in Artificial Intelligence?

12. Explain forward chaining algorithm?

13. Explain the Forward-Chaining Algorithm for Propositional Logic.

14. Explain the syntax and semantics of Propositional Logic?

15. Give a brief note on minimax & Alpha-beta pruning with example and neat sketch?

16. Discuss Resolution & inference in first-order logic?

Artificial Intelligence, CSE Dept NRCM, Hyderabad

UNIT – 3

1. What is knowledge based agent? Explain about the knowledge representation concept in

artificial intelligence?

2. What are the issues in knowledge representation in artificial intelligence?

3. Explain the issues in Knowledge Representation. Define Inheritance in Semantic Net.?

4. Explain knowledge representation schemes?

5. Explain Semantic Networks for Knowledge Representation.

6. Discuss the Bayesian Belief Networks with an example?

7. Discuss the following knowledge representation schemes:

a) Logic representation b) Semantic network c) Frame representation d) Production rules

8. Describe Bayes theorem? Define Non monotonic reasoning? What is Uncertainty

Measure? Explain briefly?

9. Explain different types of knowledge and Discuss how interaction of AI with real world

and components involved in showing intelligent?

UNIT – 4

1. What is learning? Explain the importance of Learning in artificial intelligence?

2. What is rote learning? Discuss in detail?

3. What is learning? Why do machine needs learning?

4. Explain about different kinds of learning?

5. Explain about the different methods of learning?

6. Illustrate winston’s learning program?

7. Explain in detail about the Decision trees in learning/

8. Briefly discuss about different types of Learning?

9. Discuss Supervised Learning Algorithms in detail?

10. Describe the role of information gain in Decision Tree Learning.?

11. Discuss about the Winston’s Learning Program?

12. What is learning by taking advice? Explain in detail with an example?

13. What is a decision tree? Explain the decision tree learning algorithm with an example?

UNIT - 5

1. What is expert system? Discuss about the characteristics of expert systems?

2. Why expert systems are required?

3. Explain Applications of Expert systems?

4. What is Expert system Shell? Explain the components of the shell in detail?

5. Explain Expert system shells?

6. Explain Expert Systems with example?

7. Explain the representation and use of Domain knowledge?

8. Discuss about reasoning with knowledge with neat diagram?

9. How are experts system built? Explain?

10. Discuss knowledge Acquisition?

III-B.TECH I SEMESTER NR21

ASSIGNMENT: I

MC3001: Artificial Intelligence

 Max Marks: 50

Note: Answer All Questions.

S.No Question Mar

ks

CO BL POs

1. a) What is an agent? Explain in detail about different types of

Agents.

5 1 3 4,3,5,

PSO1

 b) Discuss different types of Environments. 5 1 4 1,3,4

PSO2

2. a) Discuss probabilistic reasoning in Artificial Intelligence. 5 2 4 4,3,5,

PSO1

 b) Explain different agent types with their PEAS descriptions. 5 2 2 3,5,

PSO3

3 a) Discuss the Bayesian Belief Networks with an example 5 3 4 11,5,

PSO1

 b) Describe the issues in Knowledge Representation. Define

Inheritance in Semantic Net.

5 3 3 10,3,6

PSO2

4. a) Briefly discuss about different types of Learning 5 4 4 6,5,

PSO3

 b) Describe the role of information gain in Decision Tree

Learning.

5 4 2 2,3,

PSO1

5 a) What is expert system? Discuss about the characteristics of

expert systems.

5 5 3 1,3,4,

PSO1

 b) Explain the components of the shell in detail. 5 5 4 1,3,5,

PSO1

	2. Academic Calendar:
	(Autonomous Institution – UGC, Govt. of India)
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

	Course Outcomes:
	Building AI Systems:
	1. Intelligent Agent’s:
	2.1.1 Agent:
	2.1.2 Percept:
	2.1.3 Percept Sequence:
	2.1.4 Agent function:
	2.1.5 Agent program
	2.1.6 Agent function

	Knowledge Representation Issues
	Background Knowledge and Observations
	Querying the User
	Knowledge-Level Explanation
	How Did the System Prove a Goal?
	Why Did the System Ask a Question?

	Knowledge-Level Debugging
	Incorrect Answers
	Missing Answers
	Infinite Loops
	Other Knowledge Representation Schemes:

	Non-monotonic Reasoning

	Rote Learning
	General Learning Model.
	Perceptron
	Figure: A neuron & a Perceptron
	Perceptron Learning Algorithm
	Genetic Learning
	Supervised Learning
	Training set
	Testing set
	Accuracy of classifier: Supervised learning
	Sensitivity analysis: Supervised learning
	Regression: Supervised learning
	1. Learning from Example : Induction
	1.1 Winston's Learning
	• Winston's Program

	Expert systems:
	What are Expert Systems?
	Characteristics of Expert Systems
	Capabilities of Expert Systems
	factors
	Chaining
	SW Architecture.
	End user
	Participants
	Inference rule
	Procedure node interface

